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Abstract: In an arbitrary unitary 4D CFT we consider a scalar operator φ, and the

operator φ2 defined as the lowest dimension scalar which appears in the OPE φ×φ with a

nonzero coefficient. Using general considerations of OPE, conformal block decomposition,

and crossing symmetry, we derive a theory-independent inequality [φ2] ≤ f([φ]) for the

dimensions of these two operators. The function f(d) entering this bound is computed

numerically. For d → 1 we have f(d) = 2 + O(
√
d− 1), which shows that the free theory

limit is approached continuously. We perform some checks of our bound. We find that

the bound is satisfied by all weakly coupled 4D conformal fixed points that we are able to

construct. The Wilson-Fischer fixed points violate the bound by a constant O(1) factor,

which must be due to the subtleties of extrapolating to 4 − ε dimensions. We use our

method to derive an analogous bound in 2D, and check that the Minimal Models satisfy

the bound, with the Ising model nearly-saturating it. Derivation of an analogous bound

in 3D is currently not feasible because the explicit conformal blocks are not known in odd

dimensions. We also discuss the main phenomenological motivation for studying this set

of questions: constructing models of dynamical ElectroWeak Symmetry Breaking without

flavor problems.
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Figure 1: The best current bound (1.4), obtained by the method described in section 5. The

subscript in f6 refers to the order of derivatives used to compute this bound.

1. The problem and the result

Operator dimensions in unitary Conformal Field Theories (CFT) are subject to important

constraints known as unitarity bounds. In the simplest case of a scalar primary operator

φ, the unitarity bound states that1

d ≡ [φ] ≥ 1, (1.1)

d = 1 ⇐⇒ φ is free. (1.2)

This classic result invites the following question: What happens if d = 1+ε? In particular,

is there any sense in which the CFT (or at least its subsector not decoupled from φ) should

be close to the free scalar theory if d is close to 1? For instance, do all operator dimensions

in this subsector approach their free scalar theory values in the limit d→ 1? The standard

proof of the unitarity bound [1] does not shed light on this question.

In this paper we will show that such continuity indeed holds for the operator ‘φ2’,

by which we mean the lowest dimension scalar primary which appears in the OPE of φ

with itself:

φ(x)φ(0) ∼ (x2)−d(1 + C|x|∆minφ2(0) + . . .) , C 6= 0 . (1.3)

In free theory ∆min ≡ [φ2] = 2, and we will show that ∆min → 2 in any CFT as d → 1.

More precisely, we will show that in any 4D CFT

∆min ≤ f(d), (1.4)

where f(d) is a certain continuous function such that f(1) = 2. We will evaluate this

function numerically; it is plotted in figure 1 for d near 1.

We stress that bound (1.4) applies to the OPE φ × φ of an arbitrary scalar primary

φ. However, since the function f(d) is monotonically increasing, the bound is strongest for

the scalar primary of minimal dimension.

1Unless explicitly noted otherwise, all statements of this paper refer to D = 4 spacetime dimensions.
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Our analysis will use only the most general properties of CFT, such as unitarity,

OPE, conformal block decomposition, and crossing symmetry. The resulting bound (1.4)

is thus model independent. In particular, it holds independently of the central charge,

of the spectrum of whatever other operators which may be present in the CFT, and of

the coefficients with which these operators may appear in the OPE (1.3). Our analysis is

non-perturbative and does not assume that the CFT may be continuously connected to

the free theory.

We do not know of any 4D CFT which comes close to saturating the bound of figure 1.

We are not claiming that this bound is the best possible, and in fact we do know that it

can be somewhat improved using our method and investing some more computer time. In

spite of not being the best possible, the curve of figure 1 is a valid bound, and represents

a necessary condition which should be satisfied in any unitary CFT.

The paper is organized as follows. In section 2 we explain the phenomenological motiva-

tions behind this question, which are related to the naturalness problem of the electroweak

scale. In section 3 we review the necessary CFT techniques. In section 4 we derive a

sum rule for the contributions of all primary fields (with arbitrary spins and dimensions)

appearing in the φ × φ OPE. In section 5 we explain how the sum rule is used to derive

the bound (1.4). In section 6 we check our bound against operator dimensions in various

calculable CFTs in D = 4 and 4 − ε. We also present and similarly check an analogous

bound in D = 2. In section 7 we discuss to what extent our result in its current form

addresses the phenomenological problem from section 2. In section 8 we conclude and

indicate future research directions.

2. Phenomenological motivation

The phenomenological motivation of our study is given by one declination of the hierarchy

problem, which was lucidly discussed in a paper by Luty and Okui [2] (see also [3]). This

section is to a significant extent a review of the discussion in that paper. The bulk of the

paper is logically independent of this section, and the reader who is mainly interested in

the formal aspects of our result may skip to section 3.

The issue of mass hierarchies in field theory can be conveniently depicted from a

CFT viewpoint. Indeed the basic statement that a given field theory contains two widely

separated mass scales ΛIR ≪ ΛUV already implies that the energy dependence of physical

quantities at ΛIR ≪ E ≪ ΛUV is small, corresponding to approximate scale (and conformal)

invariance. In the case of perturbative field theories the CFT which approximates the

behaviour in the intermediate mass region is just a free one. For instance, in the case of non-

SUSY GUT’s, ΛIR and ΛUV are respectively the Fermi and GUT scale, and the CFT which

approximates behaviour at intermediate scales is just the free Standard Model. From the

CFT viewpoint, the naturalness of the hierarchy ΛIR ≪ ΛUV, or equivalently its stability,

depends on the dimensionality of the scalar operators describing the perturbations of the

CFT Lagrangian around the fixed point. In the language of the RG group, naturalness

depends on the relevance of the deformations at the fixed point. If the theory possesses a

– 3 –
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scalar operator O∆, with dimension ∆ < 4, one generically expects2 UV physics to generate

a perturbation

Lpert = cΛ4−∆
UV O∆ , (2.1)

corresponding roughly to an IR scale

ΛIR = c
1

4−∆ ΛUV . (2.2)

Absence of tuning corresponds to the expectation that c be not much smaller than O(1).

If 4 − ∆ is O(1) (strongly relevant operator) a hierarchy between ΛIR and ΛUV can be

maintained only by tuning c to be hierarchically smaller than one. This corresponds to

an unnatural hierarchy. On the other hand when 4 − ∆ is close to zero (weakly relevant

operator) a mass hierarchy is obtained as soon as both 4 − ∆ and c are just algebraically

small.3 For instance for 4−∆ = c = 0.1 the mass hierarchy spans 10 orders of magnitude.

Therefore for a weakly relevant operator a hierarchy is considered natural. The hierarchy

between the confinement and UV scale in Yang-Mills theory is an example in this second

class, albeit a limiting one.4 The only exception to the above classification of naturalness

concerns the case in which the strongly relevant operators transform under some global

approximate symmetry. In that case it is natural to assume that the corresponding c’s

be small, even hierarchically small. The stability of the hierarchy depends then on the

dimension ∆S of the scalar singlet (under all global symmetries) of lowest dimension. If

4 − ∆S ≪ 1 the hierarchy is natural.

According to the above discussion, in the SM the hierarchy between the weak scale

and any possible UV scale is unnatural because of the presence of a scalar bilinear in

the Higgs field H†H which is a total singlet with dimension ∼ 2. On the other hand in

supersymmetric extensions of the SM, such scalar bilinears exist but their coefficient can

be naturally chosen to be small. In a general supersymmetric model the weak scale is then

naturally generated either by a marginally relevant deformation (dynamical supersymmetry

breaking) or simply by adding strongly relevant supersymmetry breaking deformations with

small coefficients (soft supersymmetry breaking). Technicolor models are instead similar

to the case of YM theory: at the gaussian fixed point there are no gauge invariant scalars

of dimension < 4.

As far as the hierarchy is concerned these extensions are clearly preferable to the SM.

However as far as flavor physics is concerned the SM has, over its extensions, an advantage

which is also a simple consequence of operator dimensionality. In the SM the flavor violating

operators of lowest dimensionality, the Yukawa interactions, have dimension = 4,

LY = yuijHq̄LuR + ydijH
†q̄LdR + yeijH

†L̄LeR (SM) , (2.3)

and provide a very accurate description of flavor violating phenomenology. In particular,

the common Yukawa origin of masses and mixing angles leads to a critically important sup-

pression of Flavor Changing Neutral Currents (FCNC) and CP violation. This suppression

2See concrete examples in section 2.1 below.
3We stole this definition from ref. [3].
4This is because the corresponding deformation, the glueball field GA

µνG
µν
A , is marginally relevant: its

scaling dimension is 4 − ag2 and becomes exactly 4 at the gaussian fixed point.
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is often called Natural Flavor Conservation or GIM mechanism [4]. Once the hierarchy

v ≪ ΛUV is taken as a fact, no matter how unnatural, extra unwanted sources of flavor

violation are automatically suppressed. In particular the leading effects are associated to

4-quark interactions, with dimension 6, and are thus suppressed by v2/Λ2
UV. The situation

is not as good in supersymmetry, where in addition to the Yukawa interactions flavor is

violated by operators of dimension 2 and 3 involving the sfermions. The comparison with

technicolor brings us to discuss the motivation for our paper. In technicolor the Higgs field

is a techni-fermion bilinear H = T̄T with dimension ∼ 3. The SM fermions instead re-

main elementary, i.e. with dimension 3/2. The Yukawa interactions are therefore irrelevant

operators of dimension 6,

LY =
yij
Λ2

F

Hq̄q (TC), (2.4)

and are associated to some new dynamics [5], the flavor dynamics, at a scale ΛF, which

plays the role of our ΛUV. Very much like in the SM, and as it is found in explicit models [5],

we also expect unwanted 4-quark interactions

cijkl
Λ2

F

q̄iqj q̄kql (2.5)

suppressed by the same flavor scale. Unlike in the SM, in technicolor the Yukawa interac-

tions are not the single most relevant interaction violating flavor. This leads to a tension.

On one hand, in order to obtain the right quark masses, ΛF should be rather low. On the

other hand, the bound from FCNC requires ΛF to be generically larger. For instance the

top Yukawa implies ΛF . 10TeV. On the other hand the bound from FCNC on operators

like eq. (2.5) is rather strong. Assuming cijkl ∼ 1, flavor mixing in the neutral kaon system

puts a generic bound ranging from ΛF > 103 TeV, assuming CP conservation and left-left

current structure, to ΛF > 105 TeV, with CP violation with left-right current. Of course

assuming that cijkl have a nontrivial structure controlled by flavor breaking selection rules

one could in principle obtain a realistic situation. It is however undeniable that the way

the SM disposes of extra unwanted sources of flavor violation is more robust and thus

preferable. The origin of the problem is the large dimension of the Higgs doublet field H.

Models of walking technicolor (WTC) [6] partially alleviate it. In WTC, above the weak

scale the theory is assumed to be near a non-trivial fixed point, where H = T̄ T has a size-

able negative anomalous dimension. WTC is an extremely clever idea, but progress in its

realization has been slowed down by the difficulty in dealing with strongly coupled gauge

theories in 4D. Most of our understanding of WTC relies on gap equations, a truncation

of the Schwinger-Dyson equations for the T̄ T self-energy. Although gap equations do not

represent a fully defendable approximation, they have produced some interesting results.

In case of asymptotically free gauge theory they lead to the result that H = T̄T can have

dimension 2 at the quasi-fixed point, but not lower [7]. In this case the Yukawa interactions

would correspond to dimension 5 operators, which are more relevant than the unwanted

dimension 6 operators in eq. (2.5). However some tension still remains: the top Yukawa

still requires a Flavor scale below the bound from the Kaon system, so that the absence of

flavor violation, in our definition, is not robust. It is quite possible that the bound [H] ≥ 2

– 5 –
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obtained with the use of gap equation will not be true in general. Of course the closer

[H] is to 1, the higher the flavor scale we can tolerate to reproduce fermion masses, and

the more suppressed is the effect of eq. (2.5). However if [H] gets too close to 1 we get

back the SM and the hierarchy problem! More formally, a scalar field of dimension exactly

1 in CFT is a free field and the dimension of its composite H†H is trivially determined

to be 2, that is strongly relevant. By continuity we therefore expect that the hierarchy

problem strikes back at some point as [H] approaches 1. However the interesting remark

made by Luty and Okui [2] is that, after all, we do not really need [H] extremely close to

1. For instance [H] = 1.3 would already be good, in which case the corresponding CFT is

not weakly coupled and it could well be that [H†H] is significantly bigger than 2[H] and

maybe even close to 4. The motivation of our present work is precisely to find, from prime

principles, what is the upper bound on ∆S = [H†H] as d = [H] approaches 1. In simple

words this may be phrased as the question: how fast do CFTs, or better a subsector of

CFTs, become free as the dimension of a scalar approaches 1?

In the following subsection we would like to make a more quantitative analysis of

the tension between flavor and electroweak hierarchy in a scenario where the electroweak

symmetry breaking sector sits near a fixed point between the EW scale ΛIR and some ΛUV

at which, or below which, Flavor dynamics must take place.

2.1 Quantitative analysis

Let us normalize fields and couplings in the spirit of Naive Dimensional Analysis (NDA).

The Lagrangian will thus be written as

L =
1

16π2
F (φ, λ,M) , (2.6)

where fields, couplings and physical mass scales are indicated collectively. With this nor-

malization, Green’s functions in the coordinate representation have no factors of π, the

couplings λ are loop counting parameters, and the mass scales M correspond to physical

masses (as opposed to decay constants).

Our hypothesis is that below some UV scale ΛUV the theory splits into the elementary

SM without Higgs and a strongly coupled CFT which contains a (composite) Higgs scalar

doublet operator H. These two sectors are coupled to each other via weak gauging and

the Yukawa interactions. As a warmup exercise consider then the top Yukawa

1

16π2
λtHQ̄LtR + h.c. (2.7)

and its lowest order correction to the CFT action

∆L =

(

1

16π2

)2

λ2
t

∫

d4xd4y H(x)†H(y) Q̄LtR(x) t̄RQL(y)

∼
(

1

16π2

)2

λ2
t

∫

d4xd4y (H†H)(x)|x− y|∆S−2d|x− y|−6

∼ 1

16π2

∫

d4xλ2
tΛ

2+2d−∆S

UV (H†H)(x)

≡ 1

16π2

∫

d4x [λ̄t(ΛUV)]2Λ4−∆S

UV (H†H) (2.8)

– 6 –
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where we used the H† ×H OPE5 and cut off the d4y integral at a UV distance Λ−1
UV (ex.:

there exist new states with mass ΛUV). The quantity λ̄t(ΛUV) = λtΛ
d−1
UV represents the

dimensionless running coupling evaluated at the scale ΛUV. Given our NDA normalization,

λ̄2
t is the loop counting parameter (no extra π’s). For ∆S < 4 eq. (2.8) represents a relevant

deformation of the CFT. Allowing for a fine tuning ǫt between our naive estimate of the

top loop and the true result, the deformation lagrangian is

L∆ =
1

16π2
λ̄t(ΛUV)2ǫtΛ

4−∆S

UV H†H , (2.9)

corresponding to a physical infrared scale

ΛIR = [λ̄t(ΛUV)2ǫt]
1

4−∆S ΛUV ≡ (ct)
1

4−∆S ΛUV , (2.10)

where we made contact with our previous definition of the coefficient c. If the above

were the dominant contribution, then a hierarchy would arise for 4 − ∆S < 1 provided

λ̄t(ΛUV) < 1 and/or a mild tuning ǫt < 1 exists. However, unlike the normal situation

where the Higgs is weakly self-coupled and the top effects dominate, in our scenario the

Higgs is strongly self-coupled. Therefore we expect a leading contribution to L∆ to already

be present in the CFT independently of the top:

L∆ =
c

16π2
Λ4−∆S

UV H†H . (2.11)

The presence of such an effect basically accounts for the fact that a CFT with a relevant

deformation does not even flow to the fixed point unless the deformation parameter is

tuned. This is in line with our initial discussion. So we shall work under the assumption

that c is somewhat less than 1.

We can describe the generation of the electroweak scale by writing the effective po-

tential for the composite operator vacuum expectation value 〈(H†H)〉 = µ∆S . Compatibly

with scale invariance there will also be a term

VCFT =
a

16π2
µ4 (2.12)

where a is a numerical coefficient that depends on the CFT and on the direction of the

VEV in operator space. The full effective potential has then the form

Veff =
1

16π2

[

−Λ4−∆S

IR µ∆S + µ4
]

, (2.13)

which is stationary at µ ∼ ΛIR. Here we put for example a = 1 and chose a negative

sign for the scale breaking contribution. Notice that the vacuum dynamics picture that

we just illustrated is analogous to the Randall-Sundrum model [8] with Goldberger-Wise

radius stabilization [9] with the identification of 1/µ with the position of the IR brane in

5Notice that H†H is defined as the scalar SU(2) singlet operator of lowest dimension in the H† × H

OPE. Weak SU(2) is assumed to be a global symmetry of the CFT. The SU(2) invariance of the fermion

propagators realizes the projection on the singlet.

– 7 –
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conformal coordinates. This fact should not be surprising at all given the equivalence of

that model to a deformed CFT [10].

Our analysis of the top sector is however useful to discuss the two basic constraints on

this scenario.

The first constraint is the request that ΛUV be below the scale where the top Yukawa

becomes strong, at which point the SM becomes strongly coupled to the CFT and our

picture breaks down. The running top coupling in its standard normalization is yt(E) =

4πλ̄(E). Using the known experimental result yt(ΛIR) ∼ 1 we thus have

yt(ΛUV) = yt(ΛIR)

(

ΛUV

ΛIR

)d−1

∼ (c)
− d−1

4−∆S . (2.14)

Perturbativity corresponds to yt(Λ) . 4π, that is

d− 1

4 − ∆S
ln(1/c) . ln(4π) ∼ ln 10 . (2.15)

Clearly, this bound is better satisfied the closer d is to 1.

A second constraint is presented by the request of robust decoupling of unwanted flavor

breaking effects. Assuming any generic interaction among SM states is present at the scale

ΛUV with strength comparable to λ̄2
t (Λ), we can parameterize flavor violation by

Lfermion =
1

16π2

[

q̄6Dq +
λ̄2
t (ΛUV)

Λ2
UV

(q̄q)2
]

, (2.16)

which by going to canonical normalization becomes

Lfermion = q̄6Dq +
1

Λ2
F

(q̄q)2 (2.17)

with

ΛF = ΛIR

(

ΛUV

ΛIR

)2−d

= ΛIR(c)
− 2−d

4−∆S . (2.18)

By taking ΛIR = 1TeV, the bound from FCNC can be parametrized as ΛF > 10F TeV.

Making the conservative assumption that all quark families appear in eq. (2.16), compat-

ibility with the data requires ΛF ≥ 103 ÷ 104 TeV.6 Thus robust suppression of FCNC

corresponds to

F > 3 ÷ 4. (robust) . (2.19)

On the other hand if only the third family appears in eq. (2.16), the mixing effects involving

the lighter generations are generally suppressed by extra powers of the CKM angles. In

that case the bound on ΛF is weaker, and F > 0.5 is basically enough. In the latter case

the detailed structure of the Flavor theory matters. Notice that for conventional walking

technicolor models, for which d ≥ 2, we always have ΛF ≤ ΛIR so that even the weaker

6We consider the limit ΛF = 105 TeV really an overkill.
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bound is somewhat problematic. We are however interested to see to what extent we can

neglect this issue by focussing on the robust bound (2.19). From eq. (2.18) we must have

2 − d

4 − ∆S
ln(1/c) ≥ F ln 10 . (2.20)

Eqs. (2.15), (2.20) together imply

F

2 − d
<

ln(1/c)

(4 − ∆S) ln 10
<

1

d− 1
=⇒ d < 1 +

1

1 + F
, (2.21)

which for the robust bound (2.19) requires d < 1.25. At the same time the amount of

tuning needed to generate the hierarchy between ΛIR and the flavor scale ΛUV is

c = 10(4−∆S )F/(d−2) .

A reasonable request c > 0.1 then reads

4 − ∆S <
2 − d

F
. (2.22)

The ultimate goal of our study is thus to find a prime principle upper bound on ∆S as a

function of d. This bound should provide an extra important constraint which together

with eqs. (2.21), (2.22) may or may not be satisfied. Our main result (1.4) is a step towards

this goal, although is not yet a complete solution. The point is that the lowest dimension

scalar in the φ× φ OPE, whose dimension ∆ appears in (1.4), is not necessarily a singlet.

Nonetheless we think our result already represents some interesting piece of information.

We postpone a detailed discussion of this connection until section 7.

3. Necessary CFT techniques

To make the paper self-contained, in this section we will review a few standard CFT

concepts and results, concentrating on those which are crucial for understanding our result

and its derivation. Our personal preferred list of CFT literature includes [11 – 16]. We will

mostly work in the Euclidean signature.

3.1 Primary fields and unitarity bounds

In perturbative field theories, classification of local operators is straightforward: we have a

certain number of fundamental fields, from which the rest of the operators are obtained by

applying derivatives and multiplication. In CFTs, a similar role is played by the primary

fields. These local operators O(x) are characterized by the fact that they are annihilated

by the Special Conformal Transformation generator Kµ (at x = 0). Thus a primary field

O(x) transforms under the little group≡the subgroup of conformal transformations leaving

x = 0 invariant (this includes Lorentz transformations Mµν , dilatations D, and Special

Conformal Transformations Kµ) as follows:

[Mµν ,O(0)] = ΣµνO(0) , (3.1)

[D,O(0)] = i∆O(0) ,

[Kµ,O(0)] = 0 .

– 9 –
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Here we assume that O has well-defined quantum numbers: the scaling dimension ∆, and

the Lorentz7 spin (j, j̃) (the matrices Σµν are the corresponding generators).

Once all the primary operators are known, the rest of the field content is obtained

by applying derivatives; the fields obtained in this way are called descendants. The mul-

tiplication operation used to generate composite operators in perturbative field theories

has a CFT analogue in the concept of the OPE, which will be discussed in section 3.3

below. To avoid any possible confusion, we add that this picture applies equally well also

to conformal gauge theories, e.g. to N = 4 Super Yang-Mills, provided that only physical,

gauge invariant fields are counted as operators of the theory.

Knowing (3.1), one can determine the transformation rules at any other point x using

the conformal algebra commutation relations [11]. In principle, one could also imagine

representations where Kµ acts as a nilpotent matrix (type Ib in [11]) rather than zero as

in (3.1). However, as proven in [1], only representations of the form (3.1) occur in unitary

CFTs. Moreover, unitarity implies important lower bounds on the operator dimensions. We

are mostly interested in symmetric traceless fields O(µ), (µ) ≡ µ1 . . . µl, which correspond

to j = j̃ tensors:

Oµ1...µl
≡ σµ1

α1α̇1
. . . σµl

αlα̇l
φα1...αlα̇1...α̇l . (3.2)

This is traceless in any pair of µ indices because σµαα̇σ
µ

ββ̇
∝ εαβεα̇β̇. For such primaries the

unitarity bound reads [1]:

l = 0: ∆ ≥ 1, ∆ = 1 only for a free scalar;

l ≥ 1: ∆ ≥ l + 2, ∆ = l + 2 only for a conserved current. (3.3)

Notice a relative jump of one unit when one passes from l = 0 to l ≥ 1. In particular,

a conserved spin-1 current has ∆ = 3, while the energy-momentum tensor has ∆ = 4.

The full list of unitarity bounds, which includes also fields with j 6= j̃, can be found in [1].

Recently [17], some of these bounds were rederived in a very physically transparent way, by

weakly coupling a free scalar theory to the CFT and studying the unitarity of the S-matrix

generated by exchanges of CFT operators.

3.2 Correlation functions

As is well known, conformal symmetry fixes the coordinate dependence of 2- and 3-point

functions of primary fields. For example, for scalar primaries we have:

〈φ(x)φ(y)〉 =
1

|x− y|2∆φ
, (3.4)

〈φ(x)φ̃(y)〉 = 0 (φ 6= φ̃) . (3.5)

As it is customary, we normalize φ to have a unit coefficient in the r.h.s. of (3.4). Correlators

of two fields with unequal dimensions vanish by conformal symmetry. Even if several

primaries of the same dimension exist, by properly choosing the basis we can make sure

7Or Euclidean rotation, if one is working in the Euclidean.
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that the nondiagonal correlators (3.5) vanish. Notice that we are working with real fields,

corresponding to hermitean operators in the Minkowski space description of the theory.

The 3-point functions are also fixed by conformal symmetry:

〈φ1(x1)φ2(x2)φ3(x3)〉 =
λ123

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1|x13|∆1+∆3−∆2
,

x12 ≡ x1 − x2 etc.

The constants λ123, which become unambiguously defined once we normalize the fields via

the 2-point functions, are an important characteristic of CFT dynamics. These constants

appear as the OPE coefficients (see below), and if they are all known, any n-point function

can be reconstructed via the OPE. Thus in a sense finding these constants, together with

the spectrum of operator dimensions, is equivalent to solving, or constructing, the theory.

Also the correlator of two scalars and a spin l primary O(µ) is fixed up to a constant [14]:

〈φ1(x1)φ2(x2)O(µ)(x3)〉 =
λ12O

|x12|∆1+∆2−∆O+l|x23|∆2+∆O−∆1−l|x13|∆1+∆O−∆2−l
Zµ1 . . . Zµl

,

Zµ =
xµ13
x2

13

− xµ23
x2

23

. (3.6)

The OPE coefficients λ12O are real, once a real field basis (3.4) (and similarly for higher

spin primaries) is chosen. This reality condition follows from the reality of Minkowski-

space correlators of hermitean operators at spacelike separation, see appendix A for a

more detailed discussion.

When it comes to 4-point functions, conformal symmetry is no longer sufficient to fix

the coordinate dependence completely. In the case of 4 scalar operators, the most general

conformally-symmetric expression is

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

( |x24|
|x14|

)∆1−∆2
( |x14|
|x13|

)∆3−∆4 g(u, v)

|x12|∆1+∆2 |x34|∆3+∆4
, (3.7)

where g(u, v) is an arbitrary function of the conformally-invariant cross-ratios:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (3.8)

3.3 Operator product expansion

A very powerful property of CFT is the Operator Product Expansion (OPE), which repre-

sents a product of two primary operators at finite separation as a sum of local primaries:

φ1(x)φ2(0) =
∑

O

λ12O[C(µ)(x)O(µ)(0) + . . .] , (3.9)

C(µ)(x) =
1

|x|∆1+∆2−∆O

xµ1 · · · xµl

|x|l .

Here we wrote an OPE appropriate for a pair of scalars φ1 × φ2.
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The . . . in (3.9) stands for an infinite number of terms, less singular in the x→ 0 limit,

involving the derivatives of the primary O(µ) (i.e. its descendants). The coordinate depen-

dence of the coefficients of these descendants is in fact completely fixed by the conformal

symmetry, so that λ12O appears as an overall coefficient for the full contribution of O(µ)

and its descendants. We can write schematically:

φ1 × φ2 =
∑

O

λ12O
�
@ O ,

denoting by O the contribution of the whole conformal family.

For example, for a scalar operator O appearing in the OPE φ×φ the first few subleading

terms are ([14], p. 125, ∆ = ∆O)

φ(x)φ(0) ∼ λ12O

|x|2∆φ−∆

[

1 +
1

2
xµ∂µ +

1

8

∆ + 2

∆ + 1
xµxν∂µ∂ν −

1

16

∆

∆2 − 1
x2∂2 + . . .

]

O(0) (3.10)

There are several ways to determine the precise form of the coefficients of the descen-

dants. One, direct, way [12] is to demand that the r.h.s. of (3.9) transform under the

conformal algebra in the same way as the known transformation of the l.h.s. A second

way [25] is to require that the full OPE, with the descendant contributions included, cor-

rectly sum up to reproduce the 3-point function (3.6) not only in the limit x1 → x2, but

at finite separation as well. The last, seemingly the most efficient way, is via the so called

shadow field formalism, which introduces conjugate auxiliary fields of dimension 4−∆ and

uses them to compute “amputated” 3-point functions, which turn out to be related to the

OPE coefficient functions [14].

Using the OPE, any n-point function 〈φ1(x)φ2(0) . . .〉 can be reduced to a sum of

(n − 1)-point functions. Applying the OPE recursively, we can reduce any correlator to

3-point functions which are fixed by the symmetry. Of course, this procedure can be carried

out in full only if we already know which operators appear in the OPE, and with which

coefficients. Consistency of (3.9) and (3.6) in the limit x1 → x2 requires that the same

constant λ12O appear in both equations. Thus the sum in (3.9) is taken over all primaries

O(µ) which have non-zero correlators (3.6). It is not difficult to show that the correlator

〈φ1φ2O〉 vanishes if O has j 6= j̃,8 and thus such fields do not appear in the OPE of two

scalars (see e.g. [20], p.156).

We stress that in CFT, the OPE is not an asymptotic expansion but is a bona fide

convergent power-series expansion.9 The region of expected convergence can be understood

using the state-operator correspondence in the radial quantization of CFT (see [18], sections

2.8,2.9 for a lucid discussion in 2D). In this picture, every state |Ψ〉 defined on a sphere of

radius r around the origin can be expanded in a basis of states generated by local operator

insertions at the origin acting on the vacuum: O(0)|0〉. For example, consider the Euclidean

8Fields with j 6= j̃ correspond to antisymmetric tensors. The correlator
˙

φ1(x)φ2(−x)Oj 6=j̃(0)
¸

must

vanish for this particular spacetime configuration, since we cannot construct an antisymmetric tensor out

of xµ. Any other configuration can be reduced to the previous one by a conformal transformation.
9In general, it will involve fractional powers depending on the dimensions of the entering fields.
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4-point function 〈φ1(x)φ2(0)φ3(x3)φ4(x4)〉, and suppose that

0 < |x| < min (|x3|, |x4|) , (3.11)

so that there exists a sphere centered at the origin which contains 0, x but not x3, x4.

Cutting the path integral along the sphere, we represent the 4-point function as a Hilbert-

space product

〈φ1(x)φ2(0)φ3(x3)φ4(x4)〉 = 〈ΨS|φ3(x3)φ4(x4)|0〉 , 〈ΨS| ≡ 〈0|φ1(x)φ2(0) ,

where the radial quantization state |ΨS〉 lives on the sphere, and can be expanded in the

basis of local operator insertions at x = 0. Thus we expect the OPE to converge if (3.11)

is satisfied. To quote [18], the convergence of the OPE is just the usual convergence

of a complete set in quantum mechanics. See also [19, 20] for rigorous proofs of OPE

convergence in 2D and 4D CFT, based on the same basic idea.

The concept of OPE is also applicable in theories with broken scale invariance, e.g. in

asymptotically free perturbative field theories, such as QCD, which are well defined in the

UV. These theories can be viewed as a CFT with a relevant deformation associated to a scale

ΛQCD. The question of OPE convergence in this case is more subtle. In perturbation theory,

the OPE provides an asymptotic expansion of correlation functions in the x→ 0 limit [21],

and is unlikely to be convergent because of non-perturbative ambiguities associated with the

renormalons and the choice of the operator basis. It has however been conjectured in [22]

that full non-perturbative correlators should satisfy a convergent OPE also in theories with

broken scale invariance. This presumably includes QCD, but so far has been proved, by

direct inspection, only for free massive scalar (see [24] and ref. [6] of [22]).

3.4 Conformal blocks

As we mentioned in section 3.2, conformal invariance implies that a scalar 4-point function

must have the form (3.7), where g(u, v) is an arbitrary function of the cross-ratios. Further

information about g(u, v) can be extracted using the OPE. Namely, if we apply the OPE

to the l.h.s. of (3.7) both in 12 and in 34 channel, we can represent the 4-point function as

a sum over primary operators which appear in both OPEs:

〈φ1φ2φ3φ4〉 =
∑

O

λ12Oλ34O CBO , (3.12)

CBO =
�
@ �

@
. (3.13)

The nondiagonal terms do not contribute to this equation because the 2-point functions

of nonidentical primaries O 6= O′ vanish, and so do 2-point functions of any two operators

belonging to different conformal families. The functions CBO, which receive contributions

from 2-point functions of the operator O and its descendants, are called conformal blocks.

Conformal invariance of the OPE implies that the conformal blocks transform under the

conformal group in the same way as 〈φ1φ2φ3φ4〉. Thus they can be written in the form of
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the r.h.s. of (3.7), with an appropriate function gO(u, v). In terms of these functions, (3.12)

can be rewritten as

g(u, v) =
∑

O

λ12Oλ34O gO(u, v). (3.14)

In general, functions gO(u, v) depend on the spin l and dimension ∆ of the operator

O, as well as on the dimensions ∆i = [φi]. Various power-series representations for these

functions were known since the 70’s, but it seems that simple closed-form expressions were

obtained only recently by Dolan and Osborn [25],[26]. In what follows we will heavily use

their result, in the particular case when all ∆i are equal. In this case it takes the form

independent of ∆i:
10

gO(u, v) ≡ g∆,l(u, v) =
(−)l

2l
zz̄

z − z̄
[ k∆+l(z)k∆−l−2(z̄) − (z ↔ z̄)] ,

kβ(x) ≡ xβ/22F1 (β/2, β/2, β;x) , (3.15)

where the variables z, z̄ are related to u, v via

u = zz̄, v = (1 − z)(1 − z̄), (3.16)

or, equivalently,11

z, z̄ =
1

2

(

u− v + 1 ±
√

(u− v + 1)2 − 4u
)

.

We will give a brief review of the derivation of eq. (3.15) in appendix B. A short

comment is here in order about the meaning and range of z and z̄ (see appendix C for

a more detailed discussion). With points xi varying in the 4D Euclidean space, these

variables are complex conjugates of each other: z̄ = z∗. Configurations corresponding to

real z = z̄ can be characterized as having all 4 points lie on a planar circle. Below we

will find it convenient to analytically continue to the Minkowski signature, where z and z̄

can be treated as independent real variables. One possible spacetime configuration which

realizes this situation (the others being related by a conformal transformation) is shown in

figure 2. Here we put 3 points along a line in the T = 0 Euclidean section:

x1 = (0, 0, 0, 0), x3 = (1, 0, 0, 0), x4 = ∞ , (3.17)

while the 4-th point has been analitically continued to the Minkowski space:

x2 → xM2 = (X1, 0, 0, T ), T = −iX4. (3.18)

One shows (see appendix C) that in this situation

z = X1 − T, z̄ = X1 + T . (3.19)

We do not expect any singularities if xM2 stays inside the “spacelike diamond” region

0 < z, z̄ < 1 , (3.20)

formed by the boundaries of the past and future lightcones of x1 and x3. Indeed, one can

check that the conformal blocks are real smooth functions in the spacelike diamond.

10This happens because for equal ∆i the coefficients of conformal descendants in the OPE are determined

only by ∆ and l, see e.g. eq. (3.10).
11Notice that the r.h.s. of (3.15) is invariant under z ↔ z̄.
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x1

z̄

z

x4 → ∞
X1

T = −iX4

x3

X2 = X3 = 0

x
M

2

Figure 2: The “spacelike diamond” (3.20) in which the conformal blocks are real and regular, see

the text.

4. Crossing symmetry and the sum rule

Let us consider the 4-point function (3.7) with all 4 operators identical: φi ≡ φ. We have:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

|x12|2d|x34|2d
, d = [φ]. (4.1)

The l.h.s. of this equation is invariant under the interchange of any two xi, and so the

r.h.s. should also be invariant, which gives a set of crossing symmetry constraints for the

function g(u, v). Invariance under x1 ↔ x2 and x1 ↔ x3 (other permutations do not give

additional information) implies:

g(u, v) = g(u/v, 1/v) (x1 ↔ x2), (4.2)

vdg(u, v) = udg(v, u) (x1 ↔ x3). (4.3)

At the same time, g(u, v) can be expressed via the conformal block decomposi-

tion (3.14), which in the considered case takes the form:

g(u, v) = 1 +
∑

O∈φ×φ

λ2
O gO(u, v) . (4.4)

Here in the first term we explicitly separated the contribution of the unit operator, present

in the φ× φ OPE. Since λO are real (see section 3.2), all conformal blocks appear in (4.4)

with positive coefficients.

Let us now see under which conditions eq. (4.4) is consistent with the crossing sym-

metry. The x1 ↔ x2 invariance turns out to be rather trivial. Transformation properties

of any conformal block under this crossing depend only on its spin [25]:

g∆,l(u, v) = (−)lg∆,l(u/v, 1/v).

All the operators appearing in the OPE φ × φ have even spin.12 Thus the first crossing

constraint (4.2) will be automatically satisfied for arbitrary coefficients λ2
O.

12A formal proof of this fact can be given by considering the 3-point function
˙

φ(x)φ(−x)O(µ)(0)
¸

. By

x→ −x invariance, nonzero value of this correlator is consistent with eq. (3.6) only if l is even.
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On the other hand, we do get a nontrivial condition by imposing that (4.4) satisfy the

second crossing symmetry (4.3). This condition can be conveniently written in the form of

the following sum rule:

1 =
∑

∆,l

p∆,lFd,∆,l(z, z̄), p∆,l > 0 , (4.5)

Fd,∆,l(z, z̄) ≡ vdg∆,l(u, v) − udg∆,l(v, u)

ud − vd
, (4.6)

where the sum is taken over all ∆, l corresponding to the operators O ∈ φ× φ, p∆,l = λ2
O,

and u, v are expressed via z, z̄ via (3.16). As we will see below, this sum rule contains a

great deal of information. It will play a crucial role in the derivation of our bound on the

scalar operator dimensions.

Below we will always apply eq. (4.5) in the spacelike diamond 0 < z, z̄ < 1, see

section 3.4. We will find it convenient to use the coordinates a, b vanishing at the center of

the diamond:

z =
1

2
+ a+ b, z̄ =

1

2
+ a− b.

The sum rule functions Fd,∆,l in this diamond:

1. are smooth;

2. are even in both a and b, independently:

Fd,∆,l(±a,±b) = Fd,∆,l(a, b) ; (4.7)

3. vanish on its boundary:

Fd,∆,l(±1/2, b) = Fd,∆,l(a,±1/2) = 0. (4.8)

Properties 1,2 are shown in appendix D. Property 3 trivially follows from the definition of

Fd,∆,l, since both terms in the numerator contain factors zz̄(1 − z)(1 − z̄).

A consequence of Property 3 is that the sum rule can never be satisfied with finitely

many terms in the r.h.s.

4.1 The sum rule in the free scalar theory

To get an idea about what one can expect from the sum rule, we will demonstrate how it is

satisfied in the free scalar theory. In this case d = 1, and only operators of twist ∆− l = 2

are present in the OPE φ× φ [24, 25]. These are the operators

O∆,l ∝ φ∂µ1 . . . ∂µl
φ+ . . . (∆ = l + 2, l = 0, 2, 4, . . .). (4.9)

The first term shown in (4.9) is traceless by φ’s equation of motion, but it is not conserved.

The extra bilinear in φ terms denoted by . . . make the operator conserved for l > 0 (in

accord with the unitarity bounds (3.3)), without disturbing the tracelessness. Their exact

form can be found e.g. in [23].
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Figure 3: The r.h.s. of the sum rule in the free scalar theory, summed over l ≤ 0, 2, 4, 8, 16 (from

below up) and plotted for 0 ≤ z = z̄ ≤ 1. The asymptotic approach to 1 (dashed line) is evident.

Notice the symmetry with respect to z = 1/2, a consequence of (4.7).

In particular, there is of course the dimension 2 scalar

O2,0 =
1√
2
φ2 ,

where the constant factor is needed for the proper normalization. At spin 2 we have the

energy-momentum tensor:

O4,2 ∝ φ∂µ∂νφ− 2

[

∂µφ∂νφ− 1

4
δµν(∂φ)2

]

.

The operators with l > 2 are the conserved higher spin currents of the free scalar theory.

The OPE coefficients of all these operators (or rather their squares) can be found

by decomposing the free scalar 4-point function into the corresponding conformal blocks,

eq. (4.4). We have [25, 24]:

pl+2,l = 2l+1 (l!)2

(2l)!
(l = 2n) . (4.10)

Using these coefficients, we show in figure 3 how the sum rule (4.5), summed over the

first few terms, converges on the diagonal z = z̄ of the spacelike diamond. Several facts are

worth noticing. First, notice that the convergence is monotonic, i.e. all Fd,∆,l entering the

infinite series are positive. This feature is not limited to the free scalar case and remains

true for a wide range of d, ∆, l; it could be used to limit the maximal size of allowed OPE

coefficients (see footnote 16).

Second, the convergence is uniform on any subinterval z ∈ [ε, 1− ε], ε > 0, but not on

the full interval [0, 1], because all the sum rule functions vanish at its ends, see eq. (4.8).

Finally, the convergence is fastest near the middle point z = 1/2, corresponding to the

center a = b = 0 of the spacelike diamond. Below, when we apply the sum rule to the

general case d > 1, we will focus our attention on a neighborhood of this point.
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5. Main results

In this section we will present a derivation of the bound (1.4), based on the sum rule (4.5).

We assume that we are given a unitary CFT with a primary scalar operator φ of dimension

d > 1. We consider the 4-point function 〈φφφφ〉 and derive the sum rule (4.5), where the

sum is over all primary operators appearing in the OPE φ× φ. We will use only the most

general information about these operators, such as:13

1. only the operators satisfying the unitarity bounds (3.3) may appear;

2. their spins l are even;

3. all the coefficients p∆,l are non-negative.

We will prove the bound (1.4) by contradiction. Namely, we will show that if only

scalar operators of dimension ∆ > f(d) are allowed to appear in the OPE, the sum rule

cannot be satisfied no matter what are the dimensions, spins, and OPE coefficients of all

the other operators (as long as they satisfy the above assumptions 1,2,3). Thus such a

CFT cannot exist! In the process of proving this, we will also derive the value of f(d).

5.1 Why is the bound at all possible?

Let us begin with a very simple example which should convince the reader that some sort

of bound should be possible, at least for d sufficiently close to 1.

The argument involves some numerical exploration of functions Fd,∆,l entering the sum

rule (4.5), easily done e.g. with Mathematica. These functions depend on two variables

z, z̄, but for now it will be enough to explore the case 0 < z = z̄ < 1, which corresponds to

the point x2 lying on the diagonal x1 − x3 of the spacelike diamond in figure 2. We begin

by making a series of plots of Fd,∆,l for l = 2, 4 and for ∆ satisfying the unitarity bound

∆ ≥ l + 2 appropriate for these spins (figure 4). The scalar case l = 0 will be considered

below. We take d = 1 in these plots.

What we see is that all these functions have a rather similar shape: they start off

growing monotonically as z deviates from the symmetric point z = 1/2, and after a while

decrease sharply as z → 0, 1. These charecteristics become more pronounced as we increase

l and/or ∆. We invite the reader to check that, for d = 1, these properties are in fact true

for all Fd,∆,l for even l ≥ 2 and ∆ ≥ l + 2. By continuity, they are also true for d = 1 + ε

as long as ε > 0 is sufficiently small.14 Mathematically, we can express the fact that Fd,∆,l

13The energy-momentum tensor Tµν , which is a spin-2 primary of dimension 4, has to appear in the OPE,

with a known coefficient [25] p4,2 = 4d/(3
√
cT ) depending on the central charge cT of the theory. However,

we are not making any assumptions about the central charge and will not take this constraint into account.

It may be worth incorporating such a constraint in the future, since it could make the bound stronger.

From the point of view of phenomenology, estimates of the electroweak S-parameter prefer models with

small number of degree of freedom, hence small cT .
14One can check that they are true up to d ≃ 1.12. For larger d, F ′′

d,4,2(z = 1/2) becomes negative.
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Figure 4: The shape of Fd,∆,l for d = 1, l = 2, 4 and several values of ∆ satisfying the unitarity

bound.

is downward convex near z = 1/2 as:

F ′′
d,∆,l > 0 at z = z̄ = 1/2,

l = 2, 4, 6 . . . , ∆ ≥ l + 2, (5.1)

1 ≤ d ≤ 1 + ε .

Even before addressing the existence of the bound, let us now ask and answer the

following more elementary question: could a CFT without any scalars in the OPE φ × φ

exist? Eq. (5.1) immediately implies that the answer is NO, at least if d is sufficiently

close to 1.

The proof is by contradiction: in such a CFT, the sum rule (4.5) would have to be

satisfied with only l ≥ 2 terms present in the r.h.s. Applying the second derivative to the

both sides of (4.5) and evaluating at z = z̄ = 1/2, the l.h.s. is identically zero, while in the

r.h.s. , by (5.1), we have a sum of positive terms with positive coefficients. This is a clear

contradiction, and thus such a CFT does not exist.

To rephrase what we have just seen, the sum rule must contain some terms with

negative F ′′(z = 1/2) to have a chance to be satisfied, and by (5.1) such terms can come

only from l = 0. Thus, the next natural step is to check the shape of Fd,∆,l for l = 0, which

we plot for several ∆ ≥ 2 in figure 5. We see that the second derivative in question is

negative at ∆ = 2 (it better be since this corresponds to the free scalar theory which surely

exists!). By continuity, it is also negative for ∆ near 2. However, and this is crucial, it

turns positive for ∆ above certain critical dimension ∆c between 3 and 4. It is not difficult

to check that in fact ∆c ≃ 3.61 for d near 1.

We arrive at our main conclusion: not only do some scalars have to be present in the

OPE, but at least one of them should have ∆ ≤ ∆c! Otherwise such a CFT will be ruled

out by the same argument as a CFT without any scalars in the OPE. In other words, we

have just established the bound ∆min ≤ ∆c for d near 1.

Admittedly, this first result is extremely crude: for instance, the obtained bound does

not approach 2 as d→ 1. However, what is important is that it already contains the main

idea of the method which will be developed and used with increasing refinement below.
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Figure 5: Same as figure 4, for l = 0.

This idea is that we have to look for a differential operator which gives zero acting on the

unit function in the l.h.s. of the sum rule, but stays positive when applied to the functions

Fd,∆,l in the r.h.s.

Now, some readers may find it unappealing that the method as we presented it above

seems to be heavily dependent on the numerical evaluation of functions Fd,∆,l and their

derivatives. Do we have an analytical proof establishing e.g. the properties (5.1)? — a

purist of mathematical rigor may ask.

Partly, the answer is yes, since the asymptotic behavior of Fd,∆,l for large ∆ and/or

l is easily accessible to analytical means (see appendix D). These asymptotics establish

eq. (5.1) in the corresponding limit. On the other hand, we do not have an analytic proof

of eq. (5.1) for finite values of ∆ and l. Notice that such a proof must involve controlling

hypergeometric functions near z = 1/2. No simple general expansions of hypergeometrics

exist near this point (apart from the one equivalent to summing up the full series around

z = 0). Thus we doubt that a simple proof exists.

Nevertheless, and we would like to stress this, the fact that we can establish eq. (5.1)

only numerically (with analytic control of the asymptotic limits) does not make it less

mathematically true! The situation can be compared to proving the inequality e < π. An

aesthete may look for a fully analytical proof, but a practically minded person will just

evaluate both constants by computer. As long as the numerical precision of the evaluation

is high enough, the practical proof is no worse than the aesthete’s (and much faster).

To summarize, we should be content that numerical methods allow us to extract

from general CFT properties (crossing, unitarity bounds, conformal block decomposi-

tion, . . . ) precious information about operator dimensions which would otherwise simply

not be available.

5.2 Geometry of the sum rule

To proceed, it is helpful to develop geometric understanding of the sum rule. Given d and

a spectrum {∆, l} of O ∈ φ × φ, and allowing for arbitrary positive coefficients p∆,l, the

linear combinations in the r.h.s. of (4.5) form, in the language of functional analysis, a
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Figure 6: The three geometric situations described in the text. The thick black line denotes the

vector corresponding to the function F ≡ 1.

convex cone C in the function space {F (a, b)}. For a fixed spectrum, the sum rule can

be satisfied for some choice of the coefficients if and only if the unit function F (a, b) ≡ 1

belongs to this cone.

Obviously, when we expand the spectrum by allowing more operators to appear in the

OPE, the cone gets wider. Let us consider a one-parameter family of spectra:

Σ(∆min) = {∆, l | ∆ ≥ ∆min (l = 0), ∆ ≥ l + 2 (l = 2, 4, 6 . . .)} . (5.2)

Thus we include all scalars of dimension ∆ ≥ ∆min, and all higher even spin primaries

allowed by the unitarity bounds.

The crucial fact which makes the bound (1.4) possible is that in the limit ∆min → ∞
the convex cone generated by the above spectrum does not contain the function F ≡ 1!

In other words, CFTs without any scalars in the OPE φ × φ cannot exist, as we already

demonstrated in section 5.1 for d sufficiently close to 1.

As we lower ∆min, the spectrum expands, and the cone gets wider. There exists a

critical value ∆c such that for ∆min > ∆c the cone is not yet wide enough and the function

F ≡ 1 is still outside, while for ∆min < ∆c the F ≡ 1 function is inside the cone. For

∆min = ∆c the function belongs to the cone boundary. This geometric picture is illustrated

in figure 6.

For ∆min > ∆c, the sum rule cannot be satisfied, and a CFT corresponding to the spec-

trum Σ(∆min) (or any smaller spectrum) cannot exist. By contradiction, the bound (1.4)

with f(d) = ∆c must be true in any CFT. The problem thus reduces to determining ∆c.

Any concrete calculation must introduce a coordinate parametrization of the above

function space. We will parametrize the functions by an infinite vector
{

F (2m,2n)
}

of

even-order mixed derivatives at a = b = 0:

F (2m,2n) ≡ ∂2m
a ∂2n

b F (a, b)
∣

∣

∣

a=b=0
. (5.3)

Notice that all the odd-order derivatives of the functions entering the sum rule vanish at

this point due to the symmetry expressed by eq. (4.7):

F (2m+1,2n) = F (2m,2n+1) = F (2m+1,2n+1) = 0 .

The choice of the a = b = 0 point is suggested by this symmetry, and by the fact that it is

near this point that the sum rule seems to converge the fastest, at least in the free scalar

case, see figure 3.
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The derivatives (5.3) are relatively fast to evaluate numerically. Presumably, there is

also no loss of generality in choosing these coordinates on the function space, since the

functions entering the sum rule are analytic in the spacelike diamond.

In terms of the introduced coordinates, the sum rule becomes a sequence of linear

equations for the coefficients p∆,l ≥ 0. We have one inhomogeneous equation:

1 =
∑

p∆,lF
(0,0)
d,∆,l , (5.4)

and an infinite number of homogeneous ones:

0 =
∑

p∆,lF
(2,0)
d,∆,l ,

0 =
∑

p∆,lF
(0,2)
d,∆,l , (5.5)

· · ·

We have to determine if, for a given ∆min, the above system has a solution or not. It

turns out that in the range d ≥ 1 and ∆min ≥ 2 which is of interest for us, all F
(0,0)
d,∆,l > 0 in

the r.h.s. of the inhomogeneous equation (5.4). In such a situation, if a nontrivial solution

of the homogeneous system (5.5) is found, a solution of the full system (5.4), (5.5) can be

obtained by a simple rescaling.15

Thus for our purposes it is enough to focus on the existence of nontrivial solutions

of the homogeneous system (5.5).16 Geometrically, this means that we are studying the

projection of the convex cone C on the F (0,0) = 0 plane. This projected cone, which is by

itself a convex cone, may occupy a bigger or smaller portion of the F (0,0) = 0 plane, or

perhaps all of it. Each of the 3 cases shown in figure 6 can be characterized in terms of the

shape of the projected cone, see figure 7:

• ∆min > ∆c: This case is realized if the opening angle of the projected cone is ‘less

than π’, so that the homogeneous equations have only the trivial solution p∆,l ≡ 0. In

a more technical language, the ‘opening angle less than π’ condition means that there

exists a half-plane strictly containing the projected cone. If we write the boundary

of this half-plane as Λ = 0, the linear functional Λ will be strictly positive on the

projected cone (except at its tip).

• ∆min = ∆c: This case is realized if the opening angle of the projected cone is equal

to π in at least one direction. In other words, the boundary of the projected cone

must contains a linear subspace passing through the origin. This subspace will be

spanned by the projections of the vectors saturating the sum rule; the vectors from

the “bulk” cannot appear in the sum rule with nonzero coefficients.

• ∆min < ∆c: In this case the projected cone covers the whole plane.

Using this classification, we are reduced to studying the boundary of the projected cone.

15That is, unless the series in the r.h.s. of (5.4) diverge. However, this situation does not occur in practice.
16eq. (5.4) can become useful when studying other questions. E.g., it suggests that arbitrarily large

OPE coefficients may not be consistent with the sum rule. It would be interesting to establish a model-
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Figure 7: The shape of the projected cones in each of the 3 alternative cases described in the text.

For practical reasons we will have to work with finitely many derivatives, i.e. with

a finite-dimensional subspace of the function space or, equivalently, with a finite subset

of the homogeneous system (5.5). The above geometric picture applies also within such

a subspace. Satisfaction of the sum rule on a subspace gives (in general) weaker but

necessary condition, so that we still get a valid bound (1.4) with f(d) = ∆c. As we expand

the subspace by including more and more derivatives, the critical scalar dimension ∆c will

go down, monotonically converging to the optimal value corresponding to the full system.

5.3 Warmup example: d = 1

Let us use this philosophy to examine what the sum rule says about the spectrum of

operators appearing in the φ × φ OPE when φ has dimension d = 1. Of course we know

that d = 1 corresponds to the free scalar, see (1.2), and thus we know everything about

this theory. In particular, we know that only twist 2 operators appear in the OPE, see

section 4.1. Our interest here is to derive this result directly from the sum rule. We expect

the sum rule based approach to be robust: if we make it work for d = 1, chances are it will

also give us a nontrivial result for d > 1. In contrast, the standard proof of (1.2) is not

robust at all: it is based on the fact that the 2-point function of a d = 1 scalar is harmonic,

and can hardly be generalized to extract any information at d > 1.

The attentive reader will notice that our considerations from section 5.1 were equivalent

to retaining only the first equation out of the infinite system (5.5). This truncation did not

control well the d = 1 limit, since the obtained value of ∆c ≃ 3.61 was well above the free

theory value ∆ = 2. The next natural try is to truncate to the first two equations in (5.5).

As we will see now, this truncation already contains enough information to recover the free

theory operator dimensions from d = 1.

Following the discussion in section 5.2, we consider the projected cone — the cone gen-

erated by the vectors F = F1,∆,l projected into the two-dimensional plane (F (2,0), F (0,2)).

For each l = 0, 2, 4, . . . we get a curve in this plane, starting at the point corresponding

independent theoretical upper bound on the OPE coefficients, which could be a rigorous CFT version of

the NDA bounds in generic strongly coupled theories. For CFTs weakly coupled to the SM (‘unparticle

physics’ [27]) experimental bounds on these OPE coefficients (also known as ‘cubic unparticle couplings’)

have been recently considered in [28].
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Figure 8: The sum rule terms F1,∆,l in the (F (2,0), F (0,2)) plane. The shown curves correspond

to l = 0, 2, 4, 6. The arrows are in the direction of increasing ∆. The l = 0 curve starts at ∆ = 1

(∆ . 1.01 part is outside the plotted range); the l = 2, 4, 6 curves — at ∆ = l + 2. For large

∆ the curves asymptote to the positive F (2,0) axis, see appendix D. The shaded half-plane is the

projected cone for a spectrum which includes the ∆ = 2 scalar.

to the lowest value of ∆ allowed by the unitarity bound (3.3), see figure 8. It can be seen

from this figure that:

1. the vectors corresponding to the twist 2 operators ∆ = l + 2 lie on the line F (2,0) =

F (0,2),17 while all the other vectors lie to the right of this line;

2. the l = 0, ∆ = 2 vector points in the direction opposite to the higher-spin twist 2

operators.

The boundary of the projected cone is thus given by the line F (2,0) = F (0,2) if the

spectrum includes the ∆ = 2 scalar and at least one higher-spin twist 2 operator (e.g. the

energy-momentum tensor). Otherwise the boundary will be formed by two rays forming

an angle less than π.18 By the classification of section 5.2, it is only in the former case

that the sum rule can have a solution. This case corresponds to ∆min = ∆c: the boundary

of the projected cone contains a linear subspace passing through the origin. Thus we also

have additional information: only the vectors from the boundary, i.e. those of the twist 2

operators, may be present in the sum rule with nonzero coefficients.

The above argument appealed to the geometric intuition. For illustrative purposes we

will also give a more formal proof. Taking the difference of the two first equations in (5.5),

we get:

0 =
∑

p∆,l

(

F
(2,0)
d,∆,l − F

(0,2)
d,∆,l

)

, p∆,l ≥ 0.

By property 1 above, for d = 1 all the terms in the r.h.s. of this equation are strictly positive

unless ∆ = l+ 2. Thus, only twist 2 operators may appear with nonzero coefficients. End

of proof.

17This fact is easy to check analytically using the definition of Fd,∆,l at d = 1.
18We ignore such subtleties as the possibility of a continuous scalar spectrum ending at ∆ = 2.
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Figure 9: The analogue of figure 8 for d = 1.05. In this plot we started the l = 0 curve at ∆ = 2.

The green line is the boundary of the projected cone for ∆min = ∆c ≃ 3, see figure 10. The slope

of this line is determined by the energy-momentum tensor vector.

It is interesting to note that in figure 8 the l = 0 curve is tangent to the line F (2,0) =

F (0,2) at ∆ = 2.17 Were it not so, we would not be able to exclude the existence of solutions

to the sum rule involving scalar operators of ∆ < 2.

To conclude, we have shown that the spectrum of operators appearing in the sum rule,

and hence in the OPE, of a d = 1 scalar consists solely of twist 2 fields and that, moreover,

a ∆ = 2 scalar must be necessarily present in this spectrum.

Isn’t it amazing that we managed to find the whole spectrum using only the first

two out of the infinitely many equations (5.5)? One may ask if by adding the complete

information contained in the sum rule, a stronger result can be proved, namely that the full

4-point function of an arbitrary d = 1 scalar is given by the free scalar theory expression.

This would constitute an independent proof of the fact that a d = 1 scalar is necessarily

free. Such a proof can indeed be given,19 but we do not present it here since it is rather

unrelated to our main line of reasoning.

5.4 Simplest bound satisfying f(1) = 2

We will now present the simplest bound of the form (1.4) which, unlike the bound dis-

cussed in section 5.1, approaches 2 as d → 1. The argument uses the projection on the

(F (2,0), F (0,2)) plane similarly to the d = 1 case from the previous section. Since that

method gave ∆min = 2 for d = 1, by continuity we expect that it should give ∆min ≃ 2 for

d sufficiently close to 1.

To demonstrate how the procedure works, we pick a d close to 1, say d = 1.05, and

produce the analogue of the plot in figure 8, see figure 9.

We see several changes with respect to figure 8. The energy-momentum tensor deter-

mines one part of the projected cone boundary (the green line), while the spins l = 4, 6, . . .

lie in the bulk of the cone. Continuation of the green line to the other side of the origin

intersects the l = 0 curve at the point corresponding to ∆ = ∆c ≃ 3. In the terminology

19We are grateful to Gergely Harcos who kindly provided us with a key element of the mentioned proof.
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Figure 10: The relative position of the l = 0 vectors (red) with respect to the energy-momentum

tensor vector (blue, pointing to upper right) determines the shape of the projected cone, see the

text. If the cone contains the blue vector and both dashed red vectors, it covers the whole plane

by their convex linear combinations.

of section 5.2, this gives the critical value of ∆min. Namely, if ∆min > ∆c in the spec-

trum (5.2), the projected cone will have an angle less than π and the sum rule will have

no solutions. On the other hand, for ∆min < ∆c the projected cone covers the full plane,

see figure 10, and a nontrivial solution to the first two equations of the system (5.5) will

exist. For ∆min = ∆c the projected cone covers the half-plane shaded in figure 9.

One can check that the same situation is realized for any d > 1. In particular, the slope

of the critical cone boundary, described by the linear equation

F (2,0) − λ(d)F (0,2) = 0 , (5.6)

is always determined by the energy-momentum tensor:

λ(d) =
F (2,0)

F (0,2)
, F = Fd,4,2. (5.7)

Once λ(d) is fixed, the critical value of ∆min is determined from the intersection of the

line (5.6) with the l = 0 curve:

F (2,0) − λ(d)F (0,2) = 0, F = Fd,∆c,0 . (5.8)

The l = 0, ∆ > ∆c points then lie strictly inside the half-plane F (2,0) − λ(d)F (0,2) ≥ 0.

For ∆min > ∆c the cone angle is less than π, and the sum rule has no solution. Thus the

bound (1.4) must be valid with f(d) = ∆c.

In figure 11 we plot the corresponding value of f(d) found numerically from

eq. (5.7), (5.8), denoted f2(d) to reflect the order of derivatives used to derive this bound.

As promised, the free field theory value ∆ = 2 is approached continuously as d→ 1.

The asymptotic behavior of f2(d) for d → 1 can be determined by expanding the

equations defining ∆c in power series in d− 1 and ∆c − 2. We find:

f2(d) = 2 + γ
√
d− 1 +O(d− 1) ,

γ ≡ [2(K + 1)/3]1/2 ≃ 2.929, (5.9)

K ≡ (192 ln 2 − 133)−1.
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Figure 11: f2(d) = ∆c as determined by solving eq. (5.8). We plot it only for d rather close to

1 because in any case this bound will be significantly improved below. The dashed line shows the

asymptotic behavior (5.9), which becomes a good approximation for d . 1.001.

This asymptotics provides a good approximation for d − 1 . 10−3, see figure 11. The

square root dependence in (5.9) can be traced to the fact that for d = 1 the l = 0 curve

was tangent to the projected cone boundary at ∆ = 2. The bound of figure 11 will be

improved below by taking more derivatives into account, however the square root behavior

will persist (albeit with a different coefficient).

5.5 Improved bounds: general method

As we already mentioned in section 5.2, the bound will improve monotonically as we include

more and more equations from the infinite system (5.5) in the analysis, i.e. increase the

number of derivatives F (2m,2n) that we are controlling. We thus consider a finite basis B,

adding several higher-order derivatives to the F (2,0) and F (0,2) included in the previous

section:

B = {F (2m,2m)} = {F (2,0), F (0,2), . . .}. (5.10)

According to the discussion in section 5.2, we have to study the boundary of the projected

cone in the finite-dimensional space with coordinates (5.10). The logic in principle is

the same as in the previous section. We will have a family of curves corresponding to

l = 0, 2, 4 . . . generating the projected cone. As we lower ∆min in the spectrum (5.2), the

projected cone grows. For ∆min < ∆c it will cover the whole space. However, in this many-

dimensional situation it is not feasible to look for ∆c by making plots similar to figure 9.

We need a more formal approach.

Such an approach uses the language of linear functionals, already encountered in sec-

tion 5.2. A linear functional Λ on the finite-dimensional subspace with basis B is given by

Λ(F ) =
∑

B

λ2m,2nF
(2m,2n), (5.11)

where λ2m,2n are some fixed numbers characterizing the functional. They generalize the

single parameter λ(d) from section 5.4 to the present situation.
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Using linear functionals, the two non-critical cases of figure 7 can be distinguished as

follows:

∆min > ∆c ⇐⇒ there IS a functional Λ such that

Λ(Fd,∆,l) > 0 for all ∆, l ∈ Σ(∆min) ; (5.12)

∆min < ∆c ⇐⇒ there is NO functional Λ such that

Λ(Fd,∆,l) ≥ 0 for all ∆, l ∈ Σ(∆min) . (5.13)

A numerical procedure which for any given ∆min finds such a positive Λ or shows that a

non-negative Λ does not exists will be explained below. Assuming that we know how to

do this, determination of ∆c becomes an easy task. First, we bracket ∆c from above and

below by trying out a few values of ∆min and checking to which of the two above sets,

∆min > ∆c or ∆min < ∆c, they belong. Second, we apply the division-in-two algorithm,

i.e. reduce the length of the bracketing interval by checking its middle point, etc. This

achieves exponential precision after a finite number of steps.

We will now explain the numerical procedure. Let us begin with the non-negative

functional defined by eq. (5.13), and comment later about the strictly positive case of

eq. (5.12). Eq. (5.13) can be viewed as a system of infinitely many linear inequalities for

the coefficients λ2m,2n. The infinitude is due to three reasons:

• there are infinitely many spins l;

• for each spin l the dimension ∆ can be arbitrary large;

• the dimension ∆ varies continuously.

To be numerically tractable, this system needs to be truncated to a finite system, removing

each of the three infinities. We do it by imposing inequalities in (5.13) not for all ∆, l ∈
Σ(∆min) but only for a ‘trial set’ such that

• only finite number of spins l ≤ lmax are included;

• only dimensions up to a finite ∆ = ∆max are included;

• ∆ is discretized.

To ensure that we are not losing important information by truncating at lmax and ∆max, we

include into the trial set the vectors corresponding to the large l and large ∆ asymptotics

of the derivatives. The relevant asymptotics have the form (see eq. (D.4) in appendix D):

F
(2m,2n)
d,∆,l ∼ const

(2m+ 1)(2n + 1)
(2
√

2l (1 + x))2m+1(2
√

2l)2n+1, x ≡ ∆ − l − 2

l
≥ 0 , (5.14)

where a constant const > 0 is independent of m and n. This asymptotics is valid for

l → ∞, x≪ l fixed.
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Upon truncation to the trial set, eq. (5.13) becomes a finite system of linear inequalities,

a particular case of the linear programming problem.20 It is thus possible to determine if

a solution exists (and find it if it does) using one of several existing efficient numerical

algorithms (see [29]). In our work we used the classic Simplex Method as realized by the

LinearProgramming function of Mathematica.

If, using the linear programming, we find that (5.13) truncated to the trial set has no

solution, then a fortiori the full non-truncated system has no solution, i.e. non-negative Λ

does not exist. Thus we can safely claim that the considered ∆min brackets ∆c from below:

∆min < ∆c. The accuracy of this bracketing will increase as we include more dimensions

in the trial set (e.g. decreasing the discretization step).

Let us now consider bracketing from above, which requires finding a functional satis-

fying (5.12). First, just as for (5.13), we truncate to a trial set. We’d like to use linear

programming methods, however these methods do not work for strict inequalities. Thus

we strengthen > 0 in (5.12) to ≥ ε, where ε is a fixed small positive number:21

Λ(Fd,∆,l) ≥ ε . (5.15)

Then we can use the linear programming to find a solution of the truncated system.

Unlike in the case of bracketing from below, to claim that indeed ∆min > ∆c, we have

to check that the found Λ does not violate (5.12) for ∆, l not included in the trial set. This

will not happen for l ≥ lmax and ∆ ≥ ∆max if we take these parameters sufficiently large

and include the asymptotics. The functional Λ may however become slightly negative at

intermediate ∆ and l, as a consequence of discretizing ∆. This is not unexpected, since the

rays (∆, l) that determine the boundary of the cone and thus the functional are determined

with a fuzziness proportional to the discretization step δ∆. However, this violation will

disappear as δ∆ → 0 (for a fixed ε), see figure 12. By choosing the discretization step

smaller and smaller, we will be able to bracket ∆c from above with an arbitrary desired

precision.

5.6 Best results to date

In our numerical work we explored functionals (5.11) with the leading a-derivative up to

F (6,0) and with various choices of subleading derivatives. We now present our best results,

which were obtained using the full list of derivatives with 2m+ 2n ≤ 6:
{

F (2m,2n) | (2m, 2n) = (6, 0), (4, 2), (2, 4), (0, 6), (4, 0), (2, 2), (0, 4), (2, 0), (0, 2)
}

. (5.16)

The bound f(d) ≡ f6(d) corresponding to this choice is plotted in figures 1 and 13. Numer-

ical values for several values of d are given in table 1. For each d we give the bound f6(d)

20A general linear programming problem consists in minimizing a linear function of several variables

subject to a set of linear constraints (equalities and inequalities). Our problem is a particular case when

all constraints are inequalities and the function to be minimized is absent (or, equivalently, it is constant).
21In principle, eq. (5.15) may become too constraining if all components of the vector Fd,∆,l are O(ε),

which may happen in the large ∆ limit. In this case one simply needs to rescale Fd,∆,l by a constant factor.

Each function Fd,∆,l determines a ray in the finite-dimensional space, and such a rescaling does not change

the content of the original eq. (5.12). In practice, however, we never had to do such a rescaling.
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Figure 12: Solid curve: schematic typical dependence of the functional Λ(Fd,∆,l) on ∆. The

functional Λ satisfies (5.15) for all ∆ from a discrete trial set, which includes the dimensions ∆k

and ∆k+1 = ∆k + δ∆. Yet the functional may become slightly negative for ∆k < ∆ < ∆k+1.

Dashed curve: same for a functional corresponding to a smaller δ∆. The violation of (5.13) at

intermediate values has disappered.
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Figure 13: Log-log plot of the maximal allowed anomalous dimension of φ2, f6(d) − 2, versus the

anomalous dimension of φ, d− 1. The dots correspond to the entries of table 1, while the curve is

the approximation (5.17).

and the coefficients λ2m,2n of the functional used to obtain this bound. These functionals

were found using the linear programming method as described in the previous section.

However, to check that our bound is true, one does not need to know how we found these

functionals; it is enough to check that they indeed satisfy eq. (5.12) with ∆min = f6(d).

We have also computed the bound f6(d) for other values of d and found that it changes

smoothly, interpolating between the points given in table 1. In the considered interval of

d, the anomalous dimension f6(d)− 2 turns out to be well approximated (within ∼ 2%) by

the formula (see figure 13):

f6(d) − 2 ≃ 1.79
√
d− 1 + 2.9(d − 1) (1 < d < 1.35). (5.17)

While our method would give a bound also for d > 1.35, we did not explore this range.

The reason is that for d & 1.33 our bound exceeds ∆ = 4 and starts getting not very

interesting, taking into account the phenomenological motivations from section 2.
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The coefficients λ2m,2n in table 1 have been rounded with 6 significant digits; we

have checked that the resulting slight violation of (5.12) is very small.22 The anomalous

dimensions f6(d) − 2 in table 1 approximate the optimal values, attainable using the sub-

space (5.16), from above to within 1% (due to the finite accuracy of the division-in-two

algorithm used to bracket ∆c); they have been rounded up with 3 significant digits.

In obtaining these results, we used the trial set in the sense of the previous subsection

with lmax = 10, ∆max = 20 (l = 0), ∆max = l + 10 (l ≥ 2). We discretized ∆ with step

δ∆ = 0.01, decreased to δ∆ = 0.0025 around a few critical dimensions where the functional

approaches zero, as in figure 12 for ∆k < ∆ < ∆k+1. To take into account the asymptotic

behavior (5.14), we have included into the trial set vectors with

F (2m,2n) =

{

[

(2m+ 1)(2n + 1)(1 + x)2n
]−1

, 2m+ 2n = 6 ,

0, 2m+ 2n < 6 ,
(5.18)

obtained from (5.14) by rescaling and taking the l → ∞ limit. The parameter x in (5.18)

was varying from x = 0 to 10 with δx = 0.01. We set ε = 10−4 in (5.15).

We expect that including more derivatives in the list (5.16) should somewhat improve

the bound, especially for d close to the upper end of the considered interval. We have ob-

served a similar improvement trying out the functionals with the same leading a-derivative

(6, 0) as in (5.16), but with smaller sets of subleading derivatives:

Set 6a: (2m, 2n) = (6, 0), (4, 0), (2, 0), (0, 2); (5.19)

Set 6b: (2m, 2n) = (6, 0), (4, 0), (2, 0), (0, 2), (0, 4), (0, 6) .

For illustration, we plot the corresponding bounds in figure 14, including also the simplest

second-derivative bound from section 5.4.

6. Comparison to known results

To further test our method, in this section we shall compare our bound to the operator

dimensions in calculable CFTs. Several nontrivial tests are offered by exactly solvable CFTs

in 2D. We will discuss these examples in subsection 1. On the other hand there are fewer

calculable examples in 4D, and they all turn out to satisfy our bound in a somewhat trivial

way. The point is that our bound on ∆ lies abundantly above the line ∆ = 2d, and none

of the calculable models is significantly above this line. For instance in supersymmetric

gauge theories the operators whose dimension is exactly calculable are chiral. In that

case the relation d = 2r/3 holds, with r representing the R-charge. Then, given a chiral

scalar operator φ of dimension d, additivity of R-charge implies that φ2 has dimension 2d,

precisely on the ∆ = 2d line, and thus our bound is trivially satisfied.

In the case of large N theories Green’s functions factorize at leading 1/N order, imply-

ing ∆ = 2d +O(1/N). This relation does not provide a stringent test of our result unless

d − 1 < O(1/N), which corresponds to an elementary, free, field at leading order in 1/N .

22The rounded functionals violate (5.12) by about 10−4 for a few isolated values of ∆, l. This should be

compared to the typical O(1 ÷ 1000) range of Λ(F ) away from these points.
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d− 1 f6 − 2 λ6,0 λ4,2 λ2,4 λ0,6 λ4,0 λ2,2 λ0,4 λ2,0 λ0,2

10−5 0.00573 1. −0.97747 −1.06327 −0.047622 −116.282 277.34 49.2726 3344.18 −7170.94

10−4 0.0185 1. 0. −0.00052291 −0.999251 −153.677 48.2058 126.869 7344.28 −8370.35

10−3 0.0593 1. −1.24135 −0.845225 −0.0234949 −101.866 276.743 36.8807 2626.56 −6384.32

0.01 0.207 1. −0.738985 0.839453 −1.00868 −104.348 14.8941 88.7308 4989.57 −5288.51

0.02 0.31 1. −1.04266 1.22926 −1.01672 −87.2012 0. 73.9343 4384.97 −4356.11

0.03 0.397 1. −0.669013 0.980721 −1.02839 −100.265 −8.59119 82.6461 5012.32 −4772.52

0.04 0.476 1. −1.14492 1.51543 −1.03388 −77.4978 −20.9209 63.1812 4200.66 −3696.39

0.05 0.548 1. 6.31335 −5.62554 −1.0635 −221.053 −276.119 338.147 11062.1 −4888.67

0.07 0.678 1. 8.20962 −7.39456 −1.07537 −236.106 −425.566 439.223 13130. −3371.37

0.1 0.849 1. 10.4578 −9.55059 −1.08398 −255.95 −620.004 579.352 16504.5 −1662.47

0.15 1.11 1. 11.981 −10.4519 −1.14201 −261.146 −768.116 649.227 19160.9 −46.5554

0.2 1.36 1. 12.7909 −10.5811 −1.20555 −259.763 −863.149 676.812 20924.6 1544.21

0.25 1.61 1. 14.283 −11.2729 −1.28025 −262.93 −1027.33 746.012 24108.2 3944.39

0.3 1.86 1. 18.0218 −14.0589 −1.36917 −281.038 −1467.79 996.762 32918.8 9435.72

0.35 2.1 1. 24.6535 −19.3331 −1.49588 −292.263 −2367.92 1493.39 51357.2 20484.

Table 1: For several d we give numerical values of f6 ≡ f6(d) appearing in the bound (1.4) and the

coefficients λ2m,2n of a functional satisfying eq. (5.13) with ∆min = f6, see the text. The functionals

are normalized via λ6,0 = 1.

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
d2.0

2.5

3.0

3.5

4.0

4.5

f HdL

f2 f6 a f6 b

f6

Figure 14: From this plot one can get an idea how the bound monotonically improves as more

and more derivatives are taken into acccount in the infinite system (5.5). The black (upper) curve

is the simplest bound of section 5.4, obtained by using only the second derivatives. The next two

curves (green and red) correspond to the two sets (5.19). The lowest-lying blue curve is our best

current bound obtained using the set (5.16).

This situation can potentially be realized in variants of the Belavin-Migdal-Banks-Zaks

(BZ) fixed point [30, 31]. The simplest case of a non-Abelian gauge theory with matter

consisting of charged fermions obviously does not provide a nontrivial check of our bound.

This is because the gauge invariant operator of lowest dimension is ψ̄ψ with dimension
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already close to 3. In order to have a chance to find a model that nearly saturates our

bound we must necessarily add a scalar gauge singlet field φ to the theory and look for a

new BZ fixed point.23 Consider then a BZ model based on gauge group SU(N) with NF

fermionic flavors in the fundamental coupled to φ. The Lagrangian is

L = − 1

4g2
GµνG

µν + q̄6Dq + yφq̄q + λφ4 . (6.1)

By dialing NF/N = 11/2 − ǫ with 1/N . ǫ ≪ 1 the 1-loop β-function is small and is

compensated by the 2-loop contribution which comes with opposite sign (b > 0)

8π2µ
d

dµ

1

g2
=

2

3
Nǫ− b

g2N2

8π2
= 0 ,

g2N

8π2
∼ ǫ . (6.2)

One can then easily check that β(y) and β(λ) possess, already at 1-loop order, non-trivial

zeroes satisfying y2 ∼ λ and y2/8π2 ∼ ǫ/(NNF) ∼ ǫ/N2. Notice also that, for such value

of y2, its contribution to the 2-loop gauge β-function is subleading in 1/N , and therefore

does not significantly affect the location of the zero of β(g). The anomalous dimensions

are given by

γφ ≡ d− 1 = c1
y2N2

8π2
= a1ǫ , (6.3)

γφ2 ≡ ∆ − 2 = 2γφ + c2
λ

8π2
= 2a1ǫ+ a2

ǫ

N2
. (6.4)

Again our bound is largely satisfied, just because γφ arises at leading nontrivial order, at

1-loop. Notice that our bound in the small γφ region is roughly γφ2 ≤ c
√
γφ, c ≃ 1.79: in

order to saturate it, γφ2 and γφ should respectively arise at 1- and 2-loop order. This is

never going to be the case if φ has Yukawa couplings to fermions, but it could in principle

be so if φ is only coupled via quartic scalar couplings, as these do not lead to wave function

renormalization at 1-loop. It is however easy to see that also this option does not help us to

produce a nontrivial saturation of our bound. Indeed the fixed point condition necessarily

implies that φ should enter at most linearly in scalar quartic couplings with charged scalars,

otherwise the beta function β(λ) for the self-coupling would be strictly positive. Then even

if a fixed point existed, with such limited, just linear, interaction γφ and γφ2 would vanish

at 1-loop. Saturation of our bound would then require γφ2 = 2-loops and γφ = 4-loops

which seems unlikely to happen. Notice also that φ2 will mix with other invariant bilinears

constructed with the charged scalars, so the “dimension of φ2” here means the lowest

eigenvalue of an in principle complicated matrix of anomalous dimensions.

One possible conclusion from the above discussion is that in order to saturate our

bound, even at γφ near 0, we necessarily need a theory at small N . In 4D we unfortunately

have no other examples to play with. One obvious next try is to consider fixed points in

4− ǫ dimensions. Even if our bound strictly applies only to 4D theories, the comparison to

fixed points in 4−ǫ is almost compulsory. The result, as we now show, is partly encouraging

and partly frustrating. Consider the O(N) theory in 4 − ǫ with Lagrangian

L =
1

2
∂µφa∂

µφa −
λ

4!
(φaφa)

2 . (6.5)

23See section 5.1 of [17] for a related discussion.
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As was first studied in [32], this model has a fixed point at λ(N + 8)/48π2 = ǫ. There are

two operators playing the role of φ2, the singlet OS = φaφa and the symmetric traceless

tensor OT = φaφb − (1/N)δab(φcφc). The computation of anomalous dimension gives [32]

dφ = dfree + γφ =
(

1 − ǫ

2

)

+
N + 2

4(N + 8)2
ǫ2 , (6.6)

∆S = ∆free + γS = (2 − ǫ) +
N + 2

N + 8
ǫ , (6.7)

∆T = ∆free + γT = (2 − ǫ) +
2

N + 8
ǫ , (6.8)

where in brackets we have indicated the free field scaling dimensions in D = 4 − ǫ di-

mensions, dfree and ∆free, for φ and φ2 respectively. In analogy, and “naive continuity”,

with our study in 4D we should compare the anomalous dimension of the composite and

elementary fields. Indeed the anomalous dimension of φ arises only at two-loops so that

we have γT,S ∝ √
γφ like in our bound! One always has γT < γS and the most interesting

relation is that between γT and γφ

γT =
4√
N + 2

√
γφ ≡ cN

√
γφ . (6.9)

For N ≥ 3, cN < 1.79 consistent with our 4D bound. On the other hand c1, c2 > 1.79,

above our bound. It is not clear what to make of this apparent contradiction, given that

our bound surely applies only to 4D while here we are discussing a theory in 4− ǫ. On one

side one would be tempted to argue that our bound smoothly extends to 4 − ǫ, namely

γφ2 ≤ c(ǫ)
√
γφ (6.10)

with c(ǫ) well behaved near ǫ = 0. If our 4D result is correct then this cannot be the

case. Instead it is possible that the relation between γφ2 and γφ away from ǫ = 0 is more

complicated than our result. Indeed we can view our 4D result as a bound on γφ2/
√
γφ at

√
γφ ≫ ǫ. The full result could be

γφ2 ≤ √
γφA(

√
γφ/ε), (6.11)

where A(x) is a function which interpolates between our coefficient c ≃ 1.79 at x = ∞,

and a larger coefficient at x = 0, with a crossover around x ∼ 1. For instance:

A(x) = c+
δc

x2 + 1
, δc > 0, (6.12)

could do the job.

6.1 Bounds in 2D CFT and comparison with exact results

A wealth of information accumulated about exactly solvable CFTs in 2D [15] allows for

a nontrivial check of our method. Much of our discussion in sections 3,4,5 carries over to

2D with minimal, simplifying, changes. In 2D CFTs, we must make distinction between

the global conformal group SL(2, C), and the infinite-dimensional Virasoro algebra of local
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conformal trasnformations, of which SL(2, C) is a finite-dimensional subgroup Virasoro

algebra plays crucial role in solving these theories exactly, but it has no analogue in 4D,

and the results have to be expressed in SL(2, C) terms to allow for comparison.

When we speak about primaries, descendants, conformal blocks in 2D theories, we

must specify with respect to which group we define these concepts, Virasoro or SL(2, C).

The former is standard in the 2D CFT literature, while it is the latter that is directly

analogous to 4D situation.24

Every Virasoro primary is a SL(2, C) primary, but the converse is not true. E.g. the

stress tensor in any 2D CFT is a Virasoro descendant of the unit operator. To find SL(2, C)

primaries, we need to decompose the sequence of all Virasoro descendants of each Virasoro

primary (the so called Verma module) into irreducible SL(2, C) representations. While this

is possible in principle, it may not be straightforward in practice. Nevertheless we know

that SL(2, C) primaries have dimensions of the form

∆SL(2,C) = ∆Vir + n, n = 0 or n ≥ 2,

where ∆Vir is a Virasoro primary dimension, and n is an integer. This is because the

Virasoro operators which are not in SL(2, C) raise the dimension by at least 2 units.

The unitarity bound for bosonic fields in 2D is

∆ ≥ l,

where l = 0, 1, 2, . . . is the Lorentz spin. The SL(2, C) conformal blocks in 2D were found

in [25, 26];25 in the same coordinates as before we have

g∆,l(u, v) =
(−)l

2l
[ f∆+l(z)f∆−l(z̄) + (z ↔ z̄)] . (6.13)

Using the unitarity bound, the known conformal blocks, and the sum rule (4.5), which is

valid in any dimension, we can try to answer the same question as in 4D. Namely, for a

SL(2, C) scalar primary φ of dimension d, what is an upper bound on the dimension ∆min

of the first scalar operator appearing in the OPE φ × φ? i.e. we want a 2D analogue of

eq. (1.4). Since the free scalar is dimensionless in 2D, the region of interest is d→ dfree = 0.

In figure 15 we show such a bound on ∆min as a function of d obtained using the

second derivatives F (2,0), F (0,2) (thus this bound is analogous to the simple 4D bound from

section 5.4). The dependence looks approximately linear:

f(d) = f
(2D)
2 (d) ≃ 0.53 + 4d (2D, 2nd derivatives) .

Unlike in 4D, this simplest bound does not approach the canonical value zero as d→ dfree =

0; we do not know if this has any deep meaning. Improvements of this bound using the

method discussed in section 5.5 are possible; see below.

We will now see how the bound of figure 15 checks with the known operator dimensions

and OPEs in solvable unitary CFTs in 2D. Our first example is the free scalar in 2D.

24SL(2, C) primaries are sometimes called quasi-primaries in the 2D CFT literature.
25In contrast, explicit expressions for Virasoro conformal blocks are not known in general.
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Figure 15: The solid (blue) line represents the simplest upper bound, in an arbitrary 2D CFT, on

the dimension ∆min of the first scalar in the OPE O ×O of a dimension d scalar with itself. The

dots show the position of the minimal model OPEs φ × φ and ψ × ψ (see the text) in this plane.

The dashed line corresponds to the free theory OPE (6.14). The bound is respected in all cases.

This CFT contains the so called vertex operator primaries given by an exponential of the

fundamental field:

Vα = eiαφ, [Vα] = α2. (6.14)

The basic OPE of Vα with itself has the form:

Vα × Vα = V2α .

Thus we have d = α2, ∆ = 4α2, which gives the dashed line in figure 15,26 below the

bound.

A more interesting example involves the minimal model family of exactly solvable 2D

CFT. The unitary minimal models (see [15],[33]) are numbered by an integer m = 3, 4, . . .,

and describe the universality class of the multicritical Ginzburg-Landau model:

L ∼ (∂φ)2 + λφ2m−2 . (6.15)

For m = 3, the Ising model is in the same universality class. The central charge of the

model,

c = 1 − 6

m(m− 1)
,

monotonically approaches the free scalar value cfree = 1 as m → ∞. Intuitively, as m

increases, the potential becomes more and more flat, allows more states near the origin (c

grows), and disappears as m→ ∞ (free theory).

Minimal models are called so because they have finitely many Virasoro primary fields

(the number of SL(2, C) primaries is infinite). All Virasoro primaries are scalar fields Or,s

26Strictly speaking the bound in figure 15 was derived for real fields. However, we can apply it to the

real parts which satisfy the OPE ReVα × ReVα ∼ 1 + ReV2α.
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numbered by two integers 1 ≤ s ≤ r ≤ m− 1, whose dimension is

∆r,s =
(r +m(r − s))2 − 1

2m(m+ 1)
. (6.16)

The O1,1 is the unit operator (∆1,1 = 0), while the field φ ≡ O2,2 has the smallest dimension

among all nontrivial operators:

dφ = ∆2,2 =
3

2m(m+ 1)
. (6.17)

This field is identified with the Ginzburg-Landau field in (6.15). For m = 3 we have

∆2,2 = 1/8, which is the spin field dimension in the Ising model.

It is convenient to extend the Virasoro primary fields to a larger range 1 ≤ r ≤ m− 1,

1 ≤ s ≤ m, subject to the identification

(r, s) ↔ (m− r,m+ 1 − s) . (6.18)

The fusion rules, which say which operators appear in the OPE Or1s1 ×Or2s2 (but do not

specify the coefficients) can now be written in a relatively compact form:

Or1s1 ×Or2s2 ∼
∑

Or,s (6.19)

r = |r1 − r2| + 1, |r1 − r2| + 3, . . .min(r1 + r2 − 1, 2m − 1 − r1 − r2)

s = |s1 − s2| + 1, |s1 − s2| + 3, . . .min(s1 + s2 − 1, 2m+ 1 − s1 − s2)

For any m, the fusion rules respect a discrete Z2 symmetry

Or,s → ±Or,s, (6.20)

where ± = (−1)s−1 for m odd, (−1)r−1 for m even (this choice is dictated by consistency

with (6.18)). This symmetry corresponds to the φ→ −φ symmetry of the Ginzburg-Landau

model; in particular φ = O2,2 is odd under (6.20).

We are interested in OPEs of the form O×O ∼ 1 + Õ+ . . . where both O and Õ have

small dimensions. Two such interesting OPEs are

φ× φ ∼ 1 + φ2 + . . . (6.21)

ψ × ψ ∼ 1 + ψ2 + . . . , ψ ≡ O1,2, dψ =
1

2
− 3

2(m+ 1)
. (6.22)

Here φ2 and ψ2 are just notation for the lowest dimension operators appearing in the r.h.s.

Note that for m = 3 we have ψ ≡ φ via (6.18). Using the fusion rule (6.19) and the

operator dimensions (6.16) it is not difficult to make identification:

m = 3: φ2 ≡ O1,3, ∆φ2 = 1, (Ising) (6.23)

m > 3: φ2 ≡ O3,3, ∆φ2 =
4

m(m+ 1)
,

ψ2 ≡ O1,3, ∆ψ2 = 2 − 4

m+ 1
. (6.24)
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In particular, we see that the ψ×ψ OPE does not contain φ2, which is precisely the reason

why we are considering it.27

We are now ready for the check. Operator dimensions in both OPEs (6.21) and (6.22)

are subject to the bound of figure 15, where we marked the corresponding points up to

m = 10. We see that the bound is respected in all the cases, although the Ising model point

lies remarkably close to the boundary. We have tried to improve the bound of figure 15

by including more derivatives in the functional, according to the general method described

in section 5.5. Although we have seen some improvement for lower valued of d, there was

practically no improvement around the Ising spin dimension d = 1/8, so that also the

improved bound was respected. One could wonder if the fact that the Ising model (almost)

saturates the bound has any special significance.

We have searched for other exactly solvable 2D CFTs which could provide checks of

our 2D bound. E.g. some interesting OPEs can be extracted from the WZNW models.

However, as far as we could see, none of them come close to saturating the bound.

In conclusion, we would like to mention that some bounds for dimensions of operators

appearing in the OPE of two primaries in 2D CFTs were derived in the past by Lewellen [36]

and Christe and Ravanini [37]. Those bounds were however of a different nature than our

bound (1.4). Roughly, the Lewellen-Christe-Ravanini (LCR) bounds say that IF a primary

appears in the OPE, its dimension is not bigger than a certain bound. This is of course not

the same as our result, which says that a certain primary MUST be present in the OPE,

with the dimension not bigger than a certain bound.

The methods of LCR are based on studying the monodromy of the conformal blocks

near their singularities in the complex plane, as opposed to the more detailed information

about the shape and size of conformal blocks at intermediate regular points used by us.

They have to make a crucial assumption that only a finite number of singularity types

exist, which means that the total number N of primaries appearing in the OPE, or at least

the total number of such primaries having different ∆ mod 1, is finite. This assumption is

realized in Rational CFTs, but not in general. The LCR bounds become increasingly weak

for large N and disappear in the limit N → ∞. Thus it is doubtful that such methods

could be useful in our problem, since we would like to be free of any assumptions about

the spectrum of higher primaries.

7. Comparison to phenomenology

In this section we will comment on the precise relation of our main result (1.4) with the phe-

nomenological discussion of section 2. That discussion led to the constraints (2.21), (2.22)

on the dimension d of the Higgs field operator H and on the dimension ∆S of the first

singlet in the H ×H† OPE, denoted H†H. Are there any low-dimension non-singlets in

this OPE?

27In general, φ2 does not appear in the OPE Or,s × Or,s for r = 1 or s = 1. The operators ψ has the

lowest dimension among all these fields.
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Figure 16: Solid red : The region of (d,∆S) plane disfavored by phenomenological considerations

of section 2. In this region one or both constraints (2.21), (2.22) are not satisfied. We consider two

cases: ΛF = 40TeV (left) and ΛF = 400TeV (right). Checkered blue: the region of the same plane

which would be excluded by our bound (1.4) with f = f6 if we knew that ∆S < ∆T .

The standard considerations related to the ρ-parameter lead us to assume the “custo-

dial” SO(4) = SU(2)L×SU(2)R as the global symmetry of the CFT.28 The real components

ha of the Higgs field:

H =

(

h1 + ih2

h3 + ih4

)

,

form a multiplet of primary scalars in the fundamental of SO(4). Their basic OPE will in

general have the structure

ha(x)hb(0) ∼ 1

|x|2d
(

δab1+CS |x|∆Sδab (H†H)(0)

+CT |x|∆T T(ab)(0)+CJ |x|2xµJ [ab]
µ (0)+ . . .

)

. (7.1)

Here we indicated the possibility for two symmetry structures in the even-spin sector:

along with the SO(4) singlet H†H, a scalar Tab transforming as a traceless symmetric

tensor, i.e. the (1, 1) representation, will in general be present. E.g. in free theory Tab =

hahb− (1/4)δab (hchc) . On the other hand, in the odd-spin sector the first contribution

will be associated with the conserved, dimension 3, SO(4) current J
[ab]
µ , which is in the

antisymmetric tensor representation (1, 0) + (0, 1). Its coefficient CJ will be related to the

normalization of the SO(4) Ward identity.

Clearly (7.1) looks more complicated than (1.3). However, if we choose a = b = 1 (say)

in (7.1), the current and other odd-spin fields drop out due to antisymmetry, and we get

28Our conclusions would however not be affected by assuming just SU(2) × U(1).
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an OPE of the form (1.3). We just need to identify φ ≡ h1, φ
2 ≡ H†H or T11 depending

on which of these two scalars has smaller dimension. Eq. (1.4) then implies

min(∆S ,∆T ) ≤ f(d) .

We get a bound on ∆S only assuming ∆S < ∆T . This is not satisfactory; in fact the

reverse ∆S > ∆T seems likely (as it happens in the Wilson-Fisher fixed points in 4 − ε

dimensions, see section 6). However, we have reasons to believe (or hope) that our bound

on min(∆S ,∆T ) is close to being saturated by some existing 4D CFT. One reason is that

the truncation discussed in section 5.6 shows clear signs of convergence. The other reason

is that in 4 − ǫ we do have γφ2 ∼ √
γφ as dictated by our bound at small γφ. Taking

this into consideration it makes sense to compare our bound f(d) to the phenomenological

constraints on ∆S. We have done that in figure 16 assuming two different constraints on

the scale ΛF, a weaker one ΛF > 40 TeV and a robust one ΛF > 400 TeV. According to the

previous reasoning, even for the less likely situation ∆S < ∆T , these plots indicate that

there exists space for relaxing the flavor problem. The optimal value for the dimension

of the Higgs field turns out to be between 1.2 and 1.3. Is it possible that a situation like

this will be realized in nature? Hints of the answer to this question may soon come with

the LHC.

In the meantime, we believe that it should be possible to disentangle the contributions

of H†H and T in (7.1) and obtain a bound on ∆S free of the assumption that ∆S < ∆T .

As the above discussion clearly shows, such a bound cannot be found by considering only

diagonal φ × φ OPEs where φ is a fixed ha component. One should try to use additional

information contained in the nondiagonal OPEs with a 6= b, something which we did not

do in this paper. As it is apparent from (7.1), the global symmetry current and higher

odd-spin operators will generally contribute to these nondiagonal OPEs. More work is

needed to determine if the contributions of the odd-spin operators can be controlled in a

model-independent way.

8. Discussion and outlook

In this paper we have shown that prime principles of Conformal Field Theory, such as

unitarity, OPE, and conformal block decomposition, imply the existence of an upper bound

f(d) on the dimension ∆min of the first scalar operator φ2 in the OPE of a scalar φ of a

given dimension d.

We developed a method which allows numerical determination of f(d) with arbitrary

desired accuracy. The method is based on the sum rule, a function-space identity satisfied

by the conformal block decomposition of the 4-point function 〈φφφφ〉, which follows from

the crossing symmetry constraints. In practical application of the method the sum rule is

Taylor-expanded: replaced by finitely many equations for the derivatives. The bound f(d)

improves monotonically as more and more derivatives are included; see figures 1, 10 for

the best current bound obtained using derivatives up to the 6th order, and a sequence of

weaker bounds obtained using fewer derivatives.
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We have checked that our bound is satisfied, by a large margin, in all weakly coupled

4D CFTs that we are able to construct. We have also derived an analogous bound in 2D

and checked it against exact 2D CFT results. Again, the bound is satisfied, and in a less

trivial way than in 4D, since the Ising model almost saturates it.

Our results open up several interesting research directions:

1. It should be relatively straightforward to improve our bounds, both in 4D and in

2D, using our method but including more derivatives in the analysis. These im-

proved bounds should monotonically converge to the optimal bound, corresponding

to the infinite number of derivatives; we can already see signs of such convergence in

figure 10.

2. One should search for more examples of CFTs which come close to saturating the

bound, especially in 4D.

3. The Dolan-Osborn closed-form expressions for conformal blocks are available only in

even dimensions (up to D = 6). It is important to find expressions in 3D, comparable

in simplicity to (3.15) and (6.13). Then one could derive an analogous bound in 3D

and confront it with the operator dimensions of known 3D CFTs, such as the O(N)

universality classes. Although these theories are not exactly solvable, rather precise

estimates for critical exponents and operator dimensions have been obtained using

ε-expansion, high-temperature expansion, and Monte-Carlo simulations [34]. For

example, in 3D Ising model we have γφ = 0.0183(4) and γφ2 = 0.412(1) [35].

4. It would be interesting to understand what is the appropriate extrapolation of our

bound to 4 − ε dimension. This should explain why the comparison with Wilson-

Fischer fixed points in section 6 was not perfect.

5. A very important but difficult problem is to find a genuine generalization of our

bound to the situation when the CFT has a global symmetry. The case of SO(4)

symmetry, readily generalized to SO(N), has been discussed in section 7.
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A. Reality property of Euclidean 3-point functions

In this appendix we would like to briefly discuss the reality property of 3-point functions,

which was used at some point in our discussion. First of all, one can always choose a basis
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where each operator corresponds to an hermitian operator in the Minkowski space descrip-

tion. We work in such a basis. The reality properties of the Euclidean n-point functions for

such operators are quickly deduced by analitic continuation of the Minkowskian correlators

at space-like separation. Consider indeed the 3-point function

Gα1,α2,α3(x1, x2, x3) ≡ 〈Oα1
1 (x1)O

α2
2 (x2)O

α3
3 (x3)〉 , (A.1)

where αi collectively denote the spin indices (we only consider bosons). When x12, x23 and

x31 are spacelike, the operators commute by causality, thus implying that G is real

Gα1,α2,α3(x1, x2, x3)
∗ = 〈Oα3

3 (x3)O
α2
2 (x2)O

α1
1 (x1)〉

= 〈Oα1
1 (x1)O

α2
2 (x2)O

α3
3 (x3)〉

= Gα1,α2,α3(x1, x2, x3) . (A.2)

Continuation to the Euclidean then amounts to

x0 → −ix0
E xk → xkE (k = 1, 2, 3) , (A.3)

Oα → (−i)nαOαE , (A.4)

where nα is the number of 0 indices in {α}. Using the above rules, analytically continuing

Gα1,α2,α3 from the spacelike patch we find the Euclidean functions

Gα1,α2,α3

E (xE1, xE2, xE3) = (i)nα1+nα2+nα3Gα1,α2,α3(−ix0
E1, x

k
E1;−ix0

E2, x
k
E2;−ix0

E3, x
k
E3) .

(A.5)

Now, by Lorentz and translation invariance Gα1,α2,α3(x1, x2, x3) depends on the invari-

ants x2
ij , while the tensor indices are covariantly reproduced by combinations of xµij with

the invariant tensors ηµν and ǫµνρσ . It is now evident that if ǫµνρσ does not appear in

Gα1,α2,α3 then the factor (i)nα1+nα2+nα3 in eq. (A.5) is exactly compensated by a fac-

tor (−i)nα1+nα2+nα3 from the coordinate dependence of the tensor structure. In such a

situation Gα1,α2,α3

E is therefore real. On the other hand, contributions to GE that are

proportional to one (equivalently an odd number) power of ǫµνρσ are pure imaginary. For

the case that interests us in which two operators, say O1 and O2 have zero spin and

O3 ≡ O
µ1...µj

3 , the tensor structure of Gµ1...µj (x1, x2, x3) can only involve xµk

12 , xµk

23 and ηµν

and thus the corresponding euclidean function must be real. On the other hand the three

point function for vector fields admits in conformal field theory a contribution proportional

to ǫµνρσ which is precisely proportional to the triangle anomaly diagram [38]. Therefore

the euclidean 3-point function for vector fields in CFT is in general complex. To conclude

we notice that one can simply reproduce the result just discussed by formally assigning the

following transformation property to the invariant tensors

ηµν → δµν ǫµνρσ → −iǫµνρσ . (A.6)
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B. Closed-form expressions for conformal blocks

The Dolan-Osborn result (3.15) is crucial for us, and we would like to say a few words

about how it is derived, following [26].29 The main idea is that the conformal block is, in

a certain sense, a spherical harmonic of the conformal group. In particular, it satisfies an

eigenvalue equation

Dx1,x2CBO = −c∆,lCBO , c∆,l = l(l + 2) + ∆(∆ − 4), (B.1)

where D is a second-order partial differential operator acting on the coordinates x1,2. This

operator encodes the action of the quadratic Casimir operator of the conformal group,30

C =
1

2
MµνMµν −D2 − 1

2
(PµKµ +KµPµ) ≡ LALA,

on the state φ1(x1)φ2(x2)|0〉. The defining equation is

C · φ1(x1)φ2(x2) ≡ [LA, [LA, φ1(x1)φ2(x2)]] = Dx1,x2φ1(x1)φ2(x2).

On the other hand, c∆,l in (B.1) are nothing but the eigenvalues of the Casimir acting on

conformal primaries [12]:

C · O(µ)(0) = −c∆,lO(µ)(0).

Since C is a Casimir, the same eigenvalue equation is simultaneously satisfied for all de-

scendants of O. Thus eq. (B.1) is a consequence of the OPE (3.9) and of the definition of

conformal blocks.

The explicit form of Dx1,x2 can be found using the known expressions for the action of

conformal generators on scalar primaries:

[Pµ, φ(x)] = i∂µφ , (B.2)

[D,φ(x)] = i(∆φ + xµ∂µ)φ ,

[Mµν , φ(x)] = i(xµ∂ν − xν∂µ)φ ,

[Kµ, φ(x)] = i(x2∂µ − 2xµx · ∂ − 2xµ∆φ)φ .

Eq. (B.1) can then be rewritten as a differential equation for g∆,l(u, v). The clever change

of variables u, v → z, z̄ performed in [26] allows to find explicit solutions. In these variables

the differential equation takes the form

Dz,z̄g∆,l =
1

2
c∆,lg∆,l,

Dz.z̄ = z2(1 − z)∂2
z + z̄2(1 − z̄)∂2

z̄ −
(

z2∂z + z̄2∂z̄
)

+
2zz̄

z̄ − z
[(1 − z)∂z − (1 − z̄)∂z̄ ] .

The OPE fixes the asymptotic behavior:

g∆,l ∼
(−)l

2l
(zz̄)

∆−l
2

z − z̄
(zl+1 − z̄l+1), (z, z̄ → 0).

With these boundary conditions the solution is unique and is given by (3.15).

29The first derivation [25] is a brute force resummation of contributions of all conformal descendants of

O and is not particularly enlightening.
30Here and in (B.2) we use the sign conventions of [14] for the conformal generators.
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x1 x4 → ∞
X1

X4

x3

X2 = X3 = 0

z

x2

Figure 17: In Euclidean, z̄ = z∗. For the configuration of points chosen in this figure, z = X1+iX4

is the complex coordinate of x2 in the X1 −X4 plane.

C. z and z̄

Here we comment upon the ranges of the variables z and z̄ introduced in section 3.4.

Since z and z̄ are functions of the conformally-invariant cross-ratios, we can use conformal

symmetry to fix some of the coordinate freedom. For instance, we can put three out of four

points along a straight line, and moreover send one of them to infinity, as in eq. (3.17).

After that there still remains freedom to perform rotations leaving this line invariant, so

that we can fix

x2 = (X1, 0, 0,X4) . (C.1)

Now it becomes trivial to compute the cross-ratios:

u = x2
12 = X2

1 +X2
4 ,

v = x2
23 = (X1 − 1)2 +X2

4 .

Moreover, we can easily solve eq. (3.16) for z and z̄:

z = X1 + iX4, z̄ = z∗ . (C.2)

Thus we conclude that in the Euclidean, z̄ is always the complex conjugate of z. Moreover,

z is real if and only if all four points lie on a circle (which is a conformal image of the

straight line in the above parametrization, see figure 17).

Finally, eq. (3.18), (3.19) are obtained from (C.1), (C.2) by Wick-rotating to the

Minkowski time.

D. Asymptotic behavior

In this appendix we find large l and ∆ asymptotics of derivatives of Fd,∆,l at a = b = 0. It

is useful to rewrite the definition of Fd,∆,l as follows:

Fd,∆,l(a, b) = hd(a, b)
g̃d,∆,l(a, b) − g̃d,∆,l(−a, b)

a
, (D.1)
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where we introduced the functions

g̃d,∆,l ≡ [(1 − z)(1 − z̄)]dg∆,l ,

hd(a, b) ≡
a

(zz̄)d − [(1 − z)(1 − z̄)]d
.

These functions are smooth in the spacelike diamond. Moreover, it is not difficult to

see that

g̃(a,−b) = g̃(a, b), hd(±a,±b) = hd(a, b) .

In particular, from (D.1) we see the property (4.7) from section 4.

Let us introduce the parameter

δ ≡ ∆ − l − 2.

As we will see below, there are three relevant asymptotic limits to consider:

• l large, δ = O(1) ;

• l large, δ large, δ ≪ l2 ;

• δ large, δ ≫ l2 .

In all these cases the large asymptotic behavior of derivatives will come from differen-

tiating g∆,l, which we write in the form

g∆,l = const(−)l
zz̄

b
[ k2l+δ+2(z)kδ(z̄) − (b→ −b)] . (D.2)

In this appendix by const we denote various positive constants which may depend on d, δ or

l but are independent of the derivative order ∂2m
a ∂2n

b . These constant factors are irrelevant

for controlling the positivity of the linear functionals defined on the cones.

Starting from the following integral representation for the hypergeometric function

(see [39])

2F1 (a, b, c;x) =
Γ(c)

Γ(b)Γ(c− b)

∫ ∞

0
e−bt(1 − e−t)c−b−1(1 − x e−t)−a dt (Re c > Re b > 0)

and using the steepest descent method, we derive the large β asymptotics:

kβ(x) = e (β/2)h(x) [q(x) +O(1/β)] ,

h(x) = ln

(

4(1 −
√

1 − x )2

x

)

, q(x) =
x

2
(

1 −
√

1 − x
)

4
√

1 − x
.

The leading asymptotic behavior appears when all the derivatives fall on the exponential

factors in fβ containing large exponents. Various prefactors appearing in (D.1) and (D.2)

are not differentiated in the leading asymptotics. However, the a−1 and b−1 factors are

responsible for changing the order of the needed derivative, as follows:

F
(2m,2n)
d,∆,l ∼ const

2m+ 1
(g∆,l)

(2m+1,2n)

∼ const(−)l

(2m+ 1)(2n + 1)
(expA)(2m+1,2n+1) ,

A = (l + δ/2)h(1/2 + a+ b) + (δ/2)h(1/2 + a− b) .
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To find the leading asymptotics, we expand A near a = b = 0:

A = (l + δ)[h(1/2) + ah′(1/2)] + lb h′(1/2) + (δ/2)b2h′′(1/2) + . . . , (D.3)

h′(1/2) = 2
√

2,

h′′(1/2) = −2
√

2.

In the case δ ≪ l2 the last term in (D.3) plays no role, and we get:

F
(2m,2n)
d,∆,l ∼ const(−)l

(2m+ 1)(2n + 1)
[h′(1/2)(l + δ)]2m+1[h′(1/2)l]2n+1, δ ≪ l2 . (D.4)

This asymptotic is applicable for l large, while δ can be small or large, as long as the

condition δ ≪ l2 is satisfied; i.e. it covers the first two cases mentioned above. If on

the other hand δ ≫ l2, it is the last term in (D.3) which determined the asymptotics of

b-derivatives, and we get

F
(2m,2n)
d,∆,l ∼ const(−)l

(2n − 1)!!

2m+ 1
[h′(1/2)δ]2m+1 [h′′(1/2)δ]n, δ ≫ l2 .

Because h′′(1/2) < 0, the last asymptotics changes sign depending on the parity of n.
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